結果
問題 | No.187 中華風 (Hard) |
ユーザー | mdj982 |
提出日時 | 2019-04-23 02:24:11 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,633 bytes |
コンパイル時間 | 1,682 ms |
コンパイル使用メモリ | 170,724 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-10-12 10:52:13 |
合計ジャッジ時間 | 2,608 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #pragma warning(disable : 4267) // "int n = (unsigned)size" using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using ll = long long int; using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; using P = pair<int, int>; using Pll = pair<ll, ll>; using cdouble = complex<double>; const double eps = 1e-9; const double INFD = numeric_limits<double>::infinity(); const double PI = 3.14159265358979323846; #define Loop(i, n) for(int i = 0; i < int(n); i++) #define Loopll(i, n) for(ll i = 0; i < ll(n); i++) #define Loop1(i, n) for(int i = 1; i <= int(n); i++) #define Loopll1(i, n) for(ll i = 1; i <= ll(n); i++) #define Loopr(i, n) for(int i = int(n) - 1; i >= 0; i--) #define Looprll(i, n) for(ll i = ll(n) - 1; i >= 0; i--) #define Loopr1(i, n) for(int i = int(n); i >= 1; i--) #define Looprll1(i, n) for(ll i = ll(n); i >= 1; i--) #define Foreach(buf, container) for(auto buf : container) #define Loopdiag(i, j, h, w, sum) for(int i = ((sum) >= (h) ? (h) - 1 : (sum)), j = (sum) - i; i >= 0 && j < (w); i--, j++) #define Loopdiagr(i, j, h, w, sum) for(int j = ((sum) >= (w) ? (w) - 1 : (sum)), i = (sum) - j; j >= 0 && i < (h); j--, i++) #define Loopdiagsym(i, j, h, w, gap) for (int i = ((gap) >= 0 ? (gap) : 0), j = i - (gap); i < (h) && j < (w); i++, j++) #define Loopdiagsymr(i, j, h, w, gap) for (int i = ((gap) > (h) - (w) - 1 ? (h) - 1 : (w) - 1 + (gap)), j = i - (gap); i >= 0 && j >= 0; i--, j--) #define Loopitr(itr, container) for(auto itr = container.begin(); itr != container.end(); itr++) #define printv(vector) Loop(ex_i, vector.size()) { cout << vector[ex_i] << " "; } cout << endl; #define printmx(matrix) Loop(ex_i, matrix.size()) { Loop(ex_j, matrix[ex_i].size()) { cout << matrix[ex_i][ex_j] << " "; } cout << endl; } #define quickio() ios::sync_with_stdio(false); cin.tie(0); #define bitmanip(m,val) static_cast<bitset<(int)m>>(val) #define Comp(type_t) bool operator<(const type_t &another) const #define fst first #define snd second bool nearlyeq(double x, double y) { return abs(x - y) < eps; } bool inrange(ll x, ll t) { return x >= 0 && x < t; } bool inrange(vll xs, ll t) { Foreach(x, xs) if (!(x >= 0 && x < t)) return false; return true; } int ceillog2(ll x) { int ret = 0; x--; while (x > 0) { ret++; x >>= 1; } return ret; } ll rndf(double x) { return (ll)(x + (x >= 0 ? 0.5 : -0.5)); } ll floorsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (m * m <= x ? 0 : -1); } ll ceilsqrt(ll x) { ll m = (ll)sqrt((double)x); return m + (x <= m * m ? 0 : 1); } ll rnddiv(ll a, ll b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); } ll ceildiv(ll a, ll b) { return (a / b + (a % b == 0 ? 0 : 1)); } ll gcd(ll m, ll n) { if (n == 0) return m; else return gcd(n, m % n); } ll lcm(ll m, ll n) { return m * n / gcd(m, n); } /*******************************************************/ // mx + ny = gcd(m, n), runtime error for (m, n) = (0, 0) ll ex_euclid(ll m, ll n, ll &x, ll &y) { if (n == 0) { x = 1; y = 0; return m; } ll g = ex_euclid(n, m % n, y, x); y -= m / n * x; return g; } ll chinese_remainder_theorem(const vll &ps, const vll &rs, ll MOD) { ll p = 1, r = 0; Loop(i, ps.size()) { ll x, y; ll g = ex_euclid(p, ps[i], x, y); ll z = rs[i] - r; if (z % g != 0) return -1; ll d = z / g; r = (x * d * p + r) % MOD; p = (p * ps[i] / g) % MOD; } return r; } int main() { int n; cin >> n; vll ps(n), rs(n); Loop(i, n) { cin >> rs[i] >> ps[i]; } cout << chinese_remainder_theorem(ps, rs, ll(1e9) + 7) << endl; }