結果
| 問題 | No.134 走れ!サブロー君 | 
| コンテスト | |
| ユーザー |  Ueki | 
| 提出日時 | 2019-05-16 12:40:55 | 
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 1,511 ms / 5,000 ms | 
| コード長 | 1,762 bytes | 
| コンパイル時間 | 291 ms | 
| コンパイル使用メモリ | 12,544 KB | 
| 実行使用メモリ | 14,080 KB | 
| 最終ジャッジ日時 | 2024-09-17 05:28:45 | 
| 合計ジャッジ時間 | 5,355 ms | 
| ジャッジサーバーID (参考情報) | judge2 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 15 | 
ソースコード
# -*- coding: utf-8 -*-
import sys
sys.setrecursionlimit(10**9)
input = sys.stdin.readline
# python template for atcoder1
def manhattan(item1, item2):
    dist = abs(item1[0]-item2[0])+abs(item1[1]-item2[1])
    #print("dist->", dist)
    return dist
def calcCost(dropItem, last_visit, weight_sum):
    dist = manhattan(dropItem, last_visit)
    cost = (weight_sum+100)/120*dist
    ret = cost+dropItem[2]
    #print("ret->", ret)
    return ret
SX, SY = map(int, input().split())
N = int(input())
items = [list(map(float, input().split())) for _ in range(N)]
dp = [[float('inf')]*N for _ in range(1 << N)]
dp[0][0] = 0
for i in range(1):
    dp[0][i] = 0
for mask in range(1 << N):
    for new_item in range(N):
        if mask >> new_item & 1:
            continue
        new_state = mask | 1 << new_item
        if mask == 0:
            weight_sum = 0
            for loaded in range(N):
                if mask >> loaded & 1 == 0:
                    weight_sum += items[loaded][2]
            cost = calcCost(items[new_item], [SX, SY], weight_sum)
            dp[new_state][new_item] = cost
        else:
            for last_visit in range(N):
                if mask >> last_visit & 1:
                    weight_sum = 0
                    for loaded in range(N):
                        if mask >> loaded & 1 == 0:
                            weight_sum += items[loaded][2]
                    cost = calcCost(items[new_item],
                                    items[last_visit], weight_sum)
                    dp[new_state][new_item] = min(
                        dp[new_state][new_item], dp[mask][last_visit]+cost)
ans = float('inf')
for i in range(N):
    ans = min(ans, dp[-1][i]+manhattan([SX, SY], items[i])*100/120)
print(ans)
            
            
            
        