結果
問題 | No.132 点と平面との距離 |
ユーザー | fumiphys |
提出日時 | 2019-05-24 19:08:11 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 35 ms / 5,000 ms |
コード長 | 5,831 bytes |
コンパイル時間 | 1,429 ms |
コンパイル使用メモリ | 172,024 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-17 10:11:45 |
合計ジャッジ時間 | 1,833 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
5,248 KB |
testcase_01 | AC | 12 ms
5,376 KB |
testcase_02 | AC | 35 ms
5,376 KB |
ソースコード
// includes #include <bits/stdc++.h> // macros #define ll long long int #define pb emplace_back #define mk make_pair #define pq priority_queue #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define rep(i, n) FOR(i, 0, n) #define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--) #define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr) #define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr) #define vrep(v, i) for(int i = 0; i < (v).size(); i++) #define all(x) (x).begin(),(x).end() #define sz(x) ((int)(x).size()) #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()) #define FI first #define SE second #define dump(a, n) for(int i = 0; i < n; i++)cout << a[i] << "\n "[i + 1 != n]; #define dump2(a, n, m) for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)cout << a[i][j] << "\n "[j + 1 != m]; #define bit(n) (1LL<<(n)) #define INT(n) int n; cin >> n; #define LL(n) ll n; cin >> n; #define DOUBLE(n) double n; cin >> n; using namespace std; // types typedef pair<int, int> P; typedef pair<ll, int> Pl; typedef pair<ll, ll> Pll; typedef pair<double, double> Pd; typedef complex<double> cd; // constants const int inf = 1e9; const ll linf = 1LL << 50; const double EPS = 1e-10; const int mod = 1e9 + 7; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, -1, 0, 1}; // solve template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;} template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;} template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;} template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} struct point3d{ double x, y, z; point3d(){} point3d(double x, double y, double z): x(x), y(y), z(z){} point3d operator+(const point3d &r) const{ return point3d(x + r.x, y + r.y, z + r.z); } point3d operator-(const point3d &r) const{ return point3d(x - r.x, y - r.y, z - r.z); } point3d& operator+=(const point3d &r){ *this = *this + r; return *this; } point3d& operator-=(const point3d &r){ *this = *this - r; return *this; } bool operator==(const point3d &r) const{ return abs(x - r.x) < EPS && abs(y - r.y) < EPS && abs(z - r.z) < EPS; } bool operator!=(const point3d &r) const{ return !(*this == r); } bool operator<(const point3d &r) const{ if(abs(x - r.x) >= EPS)return x < r.x; if(abs(y - r.y) >= EPS)return y < r.y; return z < r.z; } }; point3d operator*(double x, const point3d &p){ return point3d(x * p.x, x * p.y, x * p.z); } point3d operator/(const point3d &p, double x){ return point3d(p.x / x, p.y / x, p.z / x); } double norm(const point3d &a){ return sqrt(a.x * a.x + a.y * a.y + a.z * a.z); } double dis(const point3d &a, const point3d &b){ point3d c = a - b; return norm(c); } double inner_product(const point3d &a, const point3d &b){ return a.x * b.x + a.y * b.y + a.z * b.z; } point3d outer_product(const point3d &a, const point3d &b){ return point3d(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); } double cosine(const point3d &a, const point3d &b){ return inner_product(a, b) / norm(a) / norm(b); } struct plane3d{ double a, b, c, d; double norm = 1.; plane3d(){} plane3d(double a, double b, double c, double d): a(a), b(b), c(c), d(d){ build(); } void build(){ norm = sqrt(a * a + b * b + c * c); } double dis(point3d p){ return abs(a * p.x + b * p.y + c * p.z + d) / norm; } }; plane3d get_eq(point3d pa, point3d pb, point3d pc){ point3d re = outer_product(pb - pa, pc - pa); plane3d res; res.a = re.x, res.b = re.y, res.c = re.z; res.d = - (res.a * pa.x + res.b * pa.y + res.c * pa.z); res.build(); return res; } int main(int argc, char const* argv[]) { ios_base::sync_with_stdio(false); cin.tie(0); INT(n); point3d p; cin >> p.x >> p.y >> p.z; vector<point3d> q(n); rep(i, n){ cin >> q[i].x >> q[i].y >> q[i].z; } double res = 0.; rep(i, n){ FOR(j, i + 1, n){ FOR(k, j + 1, n){ plane3d pl = get_eq(q[i], q[j], q[k]); res += pl.dis(p); } } } cout << setprecision(20); cout << res << endl; return 0; }