結果
問題 | No.834 Random Walk Trip |
ユーザー |
![]() |
提出日時 | 2019-05-25 00:07:27 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
AC
|
実行時間 | 111 ms / 2,000 ms |
コード長 | 5,054 bytes |
コンパイル時間 | 787 ms |
コンパイル使用メモリ | 114,400 KB |
実行使用メモリ | 44,812 KB |
最終ジャッジ日時 | 2024-09-17 12:54:51 |
合計ジャッジ時間 | 2,392 ms |
ジャッジサーバーID (参考情報) |
judge6 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 26 |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System;using System.Collections.Generic;using System.Globalization;using System.IO;using System.Linq;partial class Solver{public void Run(){var N = ni();var M = ni();int mod = 1000000007;long ans = 0;if (N == 1) ans = 1;else{var C = new Binomial(M + 1, mod);var pattern = new Func<int, long>(x =>{if (x < 0) x = -x;if ((M + x) % 2 == 1) return 0;var a = (M + x) / 2;return C[M, a];});for (int i = 0; i - 1 <= M; i += 2 * N){var a = i;var b = i - 1;if (a >= 0 && a <= M) ans += pattern(a);if (b >= 0 && b <= M) ans += pattern(b);ans %= mod;}for (int i = 0; i >= -M; i -= 2 * N){var a = i;var b = i - 1;if (a < 0 && -M <= a) ans += pattern(a);if (b < 0 && -M <= b) ans += pattern(b);ans %= mod;}}cout.WriteLine(ans);}}public class Binomial{private readonly long[] factorial;private readonly long[] inverseFactorial;private readonly long[] inverse;private readonly int mod;public Binomial(int size, int primeMod){size++;this.factorial = new long[size];this.inverseFactorial = new long[size];this.inverse = new long[size];this.mod = primeMod;Setup(size);}private void Setup(int size){factorial[0] = factorial[1] = 1;inverseFactorial[0] = inverseFactorial[1] = 1;inverse[1] = 1;for (int i = 2; i < size; i++){factorial[i] = factorial[i - 1] * i % mod;inverse[i] = (mod - (mod / i) * inverse[mod % i] % mod);inverseFactorial[i] = inverseFactorial[i - 1] * inverse[i] % mod;}}private long Get(int s, int t){if (s < 0 || t < 0 || s < t) return 0;if (t == 0 || s == t) return 1;if (s >= mod) return Get(s % mod, t % mod) * Get(s / mod, t / mod) % mod; // Lucas' theoremreturn factorial[s] * inverseFactorial[t] % mod * inverseFactorial[s - t] % mod;}public long this[int s, int t]{get{return Get(s, t);}}}// PREWRITEN CODE BEGINS FROM HEREpartial class Solver : Scanner{public static void Main(string[] args){new Solver(Console.In, Console.Out).Run();}TextReader cin;TextWriter cout;public Solver(TextReader reader, TextWriter writer): base(reader){this.cin = reader;this.cout = writer;}public Solver(string input, TextWriter writer): this(new StringReader(input), writer){}public int ni() { return NextInt(); }public int[] ni(int n) { return NextIntArray(n); }public long nl() { return NextLong(); }public long[] nl(int n) { return NextLongArray(n); }public double nd() { return NextDouble(); }public string ns() { return Next(); }}public class Scanner{private TextReader Reader;private Queue<String> TokenQueue = new Queue<string>();private CultureInfo ci = CultureInfo.InvariantCulture;public Scanner(): this(Console.In){}public Scanner(TextReader reader){this.Reader = reader;}public int NextInt() { return Int32.Parse(Next(), ci); }public long NextLong() { return Int64.Parse(Next(), ci); }public double NextDouble() { return double.Parse(Next(), ci); }public string[] NextArray(int size){var array = new string[size];for (int i = 0; i < size; i++) array[i] = Next();return array;}public int[] NextIntArray(int size){var array = new int[size];for (int i = 0; i < size; i++) array[i] = NextInt();return array;}public long[] NextLongArray(int size){var array = new long[size];for (int i = 0; i < size; i++) array[i] = NextLong();return array;}public String Next(){if (TokenQueue.Count == 0){if (!StockTokens()) throw new InvalidOperationException();}return TokenQueue.Dequeue();}public bool HasNext(){if (TokenQueue.Count > 0)return true;return StockTokens();}private bool StockTokens(){while (true){var line = Reader.ReadLine();if (line == null) return false;var tokens = line.Trim().Split(" ".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);if (tokens.Length == 0) continue;foreach (var token in tokens)TokenQueue.Enqueue(token);return true;}}}