結果
| 問題 |
No.529 帰省ラッシュ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-06-07 12:58:29 |
| 言語 | D (dmd 2.109.1) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,074 bytes |
| コンパイル時間 | 2,072 ms |
| コンパイル使用メモリ | 210,724 KB |
| 実行使用メモリ | 34,084 KB |
| 最終ジャッジ日時 | 2024-06-22 01:36:23 |
| 合計ジャッジ時間 | 11,562 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 7 WA * 1 RE * 10 |
ソースコード
import std.conv, std.functional, std.range, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.complex, std.container, std.math, std.numeric, std.regex, std.typecons;
import core.bitop;
class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }
real readReal() { return readToken.to!real; }
bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }
int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }
class Tree {
Tree l, r, p;
int size;
int id;
BinaryHeap!(Array!int) que;
Tuple!(int, int) mx;
this(int id) {
l = r = p = null;
size = 1;
this.id = id;
que = BinaryHeap!(Array!int)();
mx = tuple(-1, -1);
}
void update() {
size = (l ? l.size : 0) + 1 + (r ? r.size : 0);
mx = max(l ? l.mx : tuple(-1, -1), !que.empty ? tuple(que.front, id) : tuple(-1, -1), r ? r.mx : tuple(-1, -1));
}
bool isRoot() const {
return (!p || (p.l != this && p.r != this));
}
void rotate() {
if (p.l == this) { if (r) { r.p = p; } p.l = r; r = p; }
else if (p.r == this) { if (l) { l.p = p; } p.r = l; l = p; }
Tree pp = p.p;
if (pp) {
if (pp.l == p) pp.l = this;
else if (pp.r == p) pp.r = this;
}
p.update(); p.p = this; p = pp;
}
void splay() {
for (; !isRoot(); rotate()) {
if (!p.isRoot()) ((p.l == this) == (p.p.l == p)) ? p.rotate() : rotate();
}
update();
}
// Make the path from v to the root solid
// Return the node where it entered the last solid path
Tree expose() {
Tree u = this, v = null;
for (; u; u = u.p) { u.splay(); u.r = v; u.update(); v = u; }
splay();
return v;
}
// parent of this := u
void link(Tree u) {
expose(); u.expose(); p = u; u.r = this; u.update();
}
// parent of this := null
void cut() {
expose(); l.p = null; l = null; update();
}
// the root of the tree this belongs
Tree root() {
expose();
for (Tree u = this; ; u = u.l) if (!u.l) { u.splay(); return u; }
}
// LCA of this and u
// Assume this.root == u.root
Tree lca(Tree u) {
expose(); return u.expose();
}
// ([child of LCA, ..., this], [LCA, ..., u])
// Assume this.root == u.root
/*
import std.typecons : Tuple, tuple;
Tuple!(int[], int[]) path(Tree u) {
expose(); Tree v = u.expose(); splay(); v.splay();
auto pathT = (v == this) ? [] : ((l ? l.val : []) ~ [this.id]);
auto pathU = [v.id] ~ (v.r ? v.r.val : []);
return tuple(pathT, pathU);
}
*/
Tuple!(int, int) path(Tree u) {
expose(); Tree v = u.expose(); splay(); v.splay();
auto ret = tuple(-1, -1);
if (v != this) {
if (l) chmax(ret, l.mx);
if (!que.empty) chmax(ret, tuple(que.front, id));
}
if (!v.que.empty) chmax(ret, tuple(v.que.front, v.id));
if (v.r) chmax(ret, v.r.mx);
return ret;
}
}
void print(in Tree[] nodes) {
import std.stdio : write, writeln;
import std.string : format;
string dfs(in Tree u) {
return format("<%s%s(%s, %s, %s)%s>",
u.l ? (dfs(u.l) ~ " ") : "",
u.id, u.size, u.que, u.mx,
u.r ? (" " ~ dfs(u.r)) : "");
}
foreach (u; nodes) {
if (u.isRoot()) {
write("| ");
if (u.p) write(u.p.id, " ");
write("<- ", u.id, ": ");
writeln(dfs(u));
}
}
}
int root(int[] uf, int u) {
return (uf[u] < 0) ? u : (uf[u] = uf.root(uf[u]));
}
bool connect(int[] uf, int u, int v) {
u = uf.root(u);
v = uf.root(v);
if (u == v) return false;
if (uf[u] > uf[v]) swap(u, v);
uf[u] += uf[v];
uf[v] = u;
return true;
}
int N, M, Q;
int[] A, B;
int[] X, U, W, S, T;
int[][] graph;
int[] par, dis, low;
int zeit;
void dfs(int u, int p) {
par[u] = p;
dis[u] = low[u] = zeit++;
foreach (v; graph[u]) {
if (v != p) {
if (dis[v] == -1) {
dfs(v, u);
chmin(low[u], low[v]);
} else {
chmin(low[u], dis[v]);
}
}
}
}
void main() {
try {
for (; ; ) {
N = readInt();
M = readInt();
Q = readInt();
A = new int[M];
B = new int[M];
foreach (i; 0 .. M) {
A[i] = readInt() - 1;
B[i] = readInt() - 1;
}
X = new int[Q];
U = new int[Q];
W = new int[Q];
S = new int[Q];
T = new int[Q];
foreach (q; 0 .. Q) {
X[q] = readInt();
switch (X[q]) {
case 1: {
U[q] = readInt() - 1;
W[q] = readInt();
} break;
case 2: {
S[q] = readInt() - 1;
T[q] = readInt() - 1;
} break;
default: assert(false);
}
}
graph = new int[][N];
foreach (i; 0 .. M) {
graph[A[i]] ~= B[i];
graph[B[i]] ~= A[i];
}
par = new int[N];
dis = new int[N];
low = new int[N];
dis[] = -1;
zeit = 0;
dfs(0, -1);
auto isBridge = new int[M];
foreach (i; 0 .. M) {
int u = A[i], v = B[i];
if (dis[u] > dis[v]) {
swap(u, v);
}
isBridge[i] = (u == par[v] && dis[v] <= low[v]);
}
debug {
writeln("isBridge = ", isBridge);
}
auto uf = new int[N];
uf[] = -1;
foreach (i; 0 .. M) {
if (!isBridge[i]) {
uf.connect(A[i], B[i]);
}
}
auto nodes = new Tree[N];
foreach (u; 0 .. N) {
if (uf[u] < 0) {
nodes[u] = new Tree(u);
}
}
foreach (i; 0 .. M) {
if (isBridge[i]) {
int u = A[i], v = B[i];
if (par[u] == v) {
swap(u, v);
}
nodes[uf.root(v)].link(nodes[uf.root(u)]);
}
}
foreach (q; 0 .. Q) {
switch (X[q]) {
case 1: {
int u = uf.root(U[q]);
nodes[u].que.insert(W[q]);
nodes[u].mx = !nodes[u].que.empty ? tuple(nodes[u].que.front, u) : tuple(-1, -1);
} break;
case 2: {
const res = nodes[uf.root(S[q])].path(nodes[uf.root(T[q])]);
writeln(res[0]);
if (res[1] != -1) {
int u = res[1];
nodes[u].que.removeFront;
nodes[u].mx = !nodes[u].que.empty ? tuple(nodes[u].que.front, u) : tuple(-1, -1);
}
} break;
default: assert(false);
}
}
}
} catch (EOFException e) {
}
}