結果

問題 No.757 チャンパーノウン定数 (2)
ユーザー hos.lyric
提出日時 2019-06-13 14:45:22
言語 D
(dmd 2.083.0)
結果
AC  
実行時間 37 ms
コード長 3,462 Byte
コンパイル時間 1,842 ms
使用メモリ 8,916 KB
最終ジャッジ日時 2019-06-13 14:45:26

テストケース

テストケース表示
入力 結果 実行時間
使用メモリ
1_sample1.txt AC 2 ms
6,868 KB
2.txt AC 2 ms
6,872 KB
3.txt AC 2 ms
6,872 KB
4.txt AC 2 ms
6,872 KB
5.txt AC 2 ms
6,868 KB
6.txt AC 2 ms
6,872 KB
7.txt AC 1 ms
6,872 KB
8.txt AC 2 ms
6,872 KB
9.txt AC 2 ms
6,872 KB
10.txt AC 2 ms
6,868 KB
11.txt AC 2 ms
8,916 KB
12.txt AC 2 ms
6,872 KB
13.txt AC 2 ms
6,868 KB
14.txt AC 2 ms
6,872 KB
15.txt AC 2 ms
6,868 KB
16_sample2.txt AC 2 ms
6,868 KB
17.txt AC 2 ms
6,872 KB
18.txt AC 1 ms
6,872 KB
19.txt AC 2 ms
6,868 KB
20.txt AC 2 ms
6,872 KB
21.txt AC 2 ms
6,872 KB
22.txt AC 2 ms
8,916 KB
23.txt AC 2 ms
6,872 KB
24.txt AC 2 ms
6,872 KB
25.txt AC 3 ms
6,872 KB
26.txt AC 3 ms
6,872 KB
27.txt AC 3 ms
6,872 KB
28.txt AC 2 ms
6,872 KB
29.txt AC 32 ms
8,916 KB
30.txt AC 26 ms
6,872 KB
31.txt AC 5 ms
6,872 KB
32.txt AC 7 ms
6,868 KB
33.txt AC 2 ms
6,872 KB
34.txt AC 9 ms
6,872 KB
35.txt AC 15 ms
6,872 KB
36.txt AC 5 ms
6,872 KB
37.txt AC 4 ms
6,868 KB
38.txt AC 24 ms
6,868 KB
39.txt AC 32 ms
6,872 KB
40.txt AC 35 ms
6,872 KB
41.txt AC 35 ms
6,872 KB
42_sample3.txt AC 33 ms
6,868 KB
43.txt AC 33 ms
8,912 KB
44.txt AC 34 ms
6,872 KB
45.txt AC 35 ms
6,868 KB
46.txt AC 33 ms
6,868 KB
47.txt AC 35 ms
6,872 KB
48.txt AC 37 ms
6,872 KB
49.txt AC 34 ms
6,872 KB
50.txt AC 35 ms
6,872 KB
51.txt AC 2 ms
6,872 KB
52.txt AC 2 ms
6,868 KB
53.txt AC 2 ms
6,872 KB
54.txt AC 1 ms
6,868 KB
テストケース一括ダウンロード

ソースコード

diff #
import std.conv, std.functional, std.range, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.complex, std.container, std.math, std.numeric, std.regex, std.typecons;
import core.bitop;

class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }
real readReal() { return readToken.to!real; }

bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }

int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }


int B;
string D;

int L;

void normalize(int[] a) {
  foreach (i; 0 .. L + 10) {
    int q = a[i] / B, r = a[i] % B;
    if (r < 0) {
      --q;
      r += B;
    }
    a[i + 1] += q;
    a[i] = r;
  }
}

void main() {
  try {
    for (; ; ) {
      B = readInt();
      D = readToken();
      
      L = cast(int)(D.length);
      auto d = new int[L + 20];
      foreach (i; 0 .. L) {
        d[i] = D[L - 1 - i] - '0';
      }
      debug {
        writeln("d = ", d);
      }
      
      /*
        min n s.t. d <= Sum[1 <= k <= n] k (B - 1) B^(k-1)
          <=> (B - 1) d <= n B^(n+1) - (n + 1) B^n + 1
      */
      
      // d *= (B - 1)
      foreach_reverse (i; 0 .. L) {
        d[i + 1] += d[i];
        d[i] *= -1;
      }
      d.normalize;
      debug {
        writeln("d = ", d);
      }
      
      int lo = 0, hi = L + 1;
      for (; lo + 1 < hi; ) {
        const mid = (lo + hi) / 2;
        auto e = new int[L + 20];
        e[0] += 1;
        e[mid] -= (mid + 1);
        e[mid + 1] += mid;
        e.normalize;
        int s;
        foreach_reverse (i; 0 .. L + 10) {
          if (d[i] != e[i]) {
            s = sgn(d[i] - e[i]);
            break;
          }
        }
        ((s <= 0) ? hi : lo) = mid;
      }
      const n = hi;
      debug {
        writeln("n = ", n);
      }
      
      foreach (k; 1 .. n) {
        // d -= (B - 1) . k (B - 1) B^(k-1)
        d[k - 1] -= (B - 1) * k * (B - 1);
      }
      d.normalize;
      debug {
        writeln("d = ", d);
      }
      
      int rem;
      
      // f = d / (B - 1)
      auto f = new int[L + 20];
      rem = 0;
      foreach_reverse (i; 0 .. L + 10) {
        rem = rem * B + d[i];
        f[i] = rem / (B - 1);
        rem %= (B - 1);
      }
      assert(rem == 0);
      debug {
        writeln("f = ", f);
      }
      
      // f -= 1, g = d / n
      --f[0];
      f.normalize;
      auto g = new int[L + 20];
      rem = 0;
      foreach_reverse (i; 0 .. L + 10) {
        rem = rem * B + f[i];
        g[i] = rem / n;
        rem %= n;
      }
      debug {
        writeln("g = ", g);
        writeln("rem = ", rem);
      }
      
      // rem-th (0-based) significant digit of B^(n-1) + g
      g[n - 1] += 1;
      const ans = g[n - 1 - rem];
      writeln(ans);
    }
  } catch (EOFException e) {
  }
}
0