結果
| 問題 |
No.840 ほむほむほむら
|
| コンテスト | |
| ユーザー |
Sumitacchan
|
| 提出日時 | 2019-06-14 22:43:44 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 368 ms / 4,000 ms |
| コード長 | 7,615 bytes |
| コンパイル時間 | 1,716 ms |
| コンパイル使用メモリ | 174,088 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-11-14 07:39:42 |
| 合計ジャッジ時間 | 4,577 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define FOR(i, begin, end) for(int i=(begin);i<(end);i++)
#define REP(i, n) FOR(i,0,n)
#define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--)
#define IREP(i, n) IFOR(i,0,n)
#define Sort(v) sort(v.begin(), v.end())
#define Reverse(v) reverse(v.begin(), v.end())
#define all(v) v.begin(),v.end()
#define SZ(v) ((int)v.size())
#define Lower_bound(v, x) distance(v.begin(), lower_bound(v.begin(), v.end(), x))
#define Upper_bound(v, x) distance(v.begin(), upper_bound(v.begin(), v.end(), x))
#define Max(a, b) a = max(a, b)
#define Min(a, b) a = min(a, b)
#define bit(n) (1LL<<(n))
#define bit_exist(x, n) ((x >> n) & 1)
#define debug(x) cout << #x << "=" << x << endl;
#define vdebug(v) cout << #v << "=" << endl; REP(i_debug, v.size()){ cout << v[i_debug] << ","; } cout << endl;
#define mdebug(m) cout << #m << "=" << endl; REP(i_debug, m.size()){ REP(j_debug, m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;}
#define pb push_back
#define f first
#define s second
#define int long long
#define INF 1000000000000000000
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; }
template<typename T> ostream &operator<<(ostream &os, vector<T> &v){ for(int i = 0; i < v.size(); i++) { cout << v[i]; if(i != v.size() - 1) cout << endl; }; return os; }
template<typename T> void Out(T x) { cout << x << endl; }
template<typename T1, typename T2> void Ans(bool f, T1 y, T2 n) { if(f) Out(y); else Out(n); }
using vec = vector<int>;
using mat = vector<vec>;
using Pii = pair<int, int>;
using PiP = pair<int, Pii>;
using PPi = pair<Pii, int>;
using bools = vector<bool>;
using pairs = vector<Pii>;
//int dx[4] = {1,0,-1,0};
//int dy[4] = {0,1,0,-1};
//char d[4] = {'D','R','U','L'};
//const int mod = 1000000007;
const int mod = 998244353;
#define Add(x, y) x = (x + (y)) % mod
#define Mult(x, y) x = (x * (y)) % mod
template<long long MOD>
struct ModInt{
using ll = long long;
ll val;
void setval(ll v) { val = v % MOD; };
ModInt(): val(0) {}
ModInt(ll v) { setval(v); };
ModInt operator+(const ModInt &x) const { return ModInt(val + x.val); }
ModInt operator-(const ModInt &x) const { return ModInt(val - x.val + MOD); }
ModInt operator*(const ModInt &x) const { return ModInt(val * x.val); }
ModInt operator/(const ModInt &x) const { return *this * x.inv(); }
ModInt operator-() const { return ModInt(MOD - val); }
ModInt operator+=(const ModInt &x) { return *this = *this + x; }
ModInt operator-=(const ModInt &x) { return *this = *this - x; }
ModInt operator*=(const ModInt &x) { return *this = *this * x; }
ModInt operator/=(const ModInt &x) { return *this = *this / x; }
friend ostream& operator<<(ostream &os, const ModInt &x) { os << x.val; return os; }
friend istream& operator>>(istream &is, ModInt &x) { is >> x.val; x.val = (x.val % MOD + MOD) % MOD; return is; }
ModInt pow(ll n) const {
ModInt a = 1;
if(n == 0) return a;
int i0 = 64 - __builtin_clzll(n);
for(int i = i0 - 1; i >= 0; i--){
a = a * a;
if((n >> i) & 1) a *= (*this);
}
return a;
}
ModInt inv() const { return this->pow(MOD - 2); }
};
using mint = ModInt<mod>; mint pow(mint x, long long n) { return x.pow(n); }
//using mint = double; //for debug
using mvec = vector<mint>;
using mmat = vector<mvec>;
struct Combination{
vector<mint> fact, invfact;
Combination(int N){
fact = vector<mint>({mint(1)});
invfact = vector<mint>({mint(1)});
fact_initialize(N);
}
void fact_initialize(int N){
int i0 = fact.size();
if(i0 >= N + 1) return;
fact.resize(N + 1);
invfact.resize(N + 1);
for(int i = i0; i <= N; i++) fact[i] = fact[i - 1] * i;
invfact[N] = (mint)1 / fact[N];
for(int i = N - 1; i >= i0; i--) invfact[i] = invfact[i + 1] * (i + 1);
}
mint nCr(int n, int r){
if(n < 0 || r < 0 || r > n) return mint(0);
if(fact.size() < n + 1) fact_initialize(n);
return fact[n] * invfact[r] * invfact[n - r];
}
mint nPr(int n, int r){
if(n < 0 || r < 0 || r > n) return mint(0);
if(fact.size() < n + 1) fact_initialize(n);
return fact[n] * invfact[n - r];
}
};
template<typename T>
struct Matrix{
int R, C;
vector<T> element;
__inline__ T &at(int i, int j) { return element[i * C + j]; }
Matrix(int R, int C, vector<T> &element): R(R), C(C), element(element) {
assert(element.size() == R * C);
}
Matrix(vector<vector<T>> &_element) {
R = _element.size();
C = _element[0].size();
element.resize(R * C);
for(int i = 0; i < R; i++) for(int j = 0; j < C; j++) element[i * C + j] = _element[i][j];
}
Matrix(int R, int C): R(R), C(C) { element = vector<T>(R * C, (T)0); }
//Make an identity matrix
Matrix(int N): R(N), C(N) {
element = vector<T>(N * N, (T)0);
for(int i = 0; i < N; i++) element[(N + 1) * i] = (T)1;
}
Matrix() :R(0), C(0) {}
Matrix operator+(Matrix &x) {
assert(R == x.R && C == x.C);
Matrix M(R, C);
for(int i = 0; i < R * C; i++) M.element[i] = element[i] + x.element[i];
return M;
}
Matrix operator-(Matrix &x) {
assert(R == x.R && C == x.C);
Matrix M(R, C);
for(int i = 0; i < R * C; i++) M.element[i] = element[i] - x.element[i];
return M;
}
Matrix operator*(Matrix &x) {
assert(C == x.R);
Matrix M(R, x.C);
for(int i = 0; i < R; i++) for(int j = 0; j < x.C; j++){
for(int k = 0; k < C; k++) M.at(i, j) += at(i, k) * x.at(k, j);
}
return M;
}
Matrix operator*(const T &a) {
Matrix M(R, C);
for(int i = 0; i < R * C; i++) M.element[i] = element[i] * a;
return M;
}
Matrix operator+=(Matrix &x) { return *this = *this + x; }
Matrix operator-=(Matrix &x) { return *this = *this - x; }
Matrix operator*=(Matrix &x) { return *this = *this * x; }
Matrix operator*=(const T &a) {
for(int i = 0; i < R * C; i++) element[i] *= a;
return *this;
}
Matrix pow(long long n) {
assert(R == C);
Matrix M(R);
if(n == 0) return M;
int i0 = 64 - __builtin_clzll(n);
for(int i = i0 - 1; i >= 0; i--){
M *= M;
if((n >> i) & 1) M *= (*this);
}
return M;
}
void Print(){
for(int i = 0; i < R; i++){
for(int j = 0; j < C; j++) cout << element[i * C + j] << " ";
cout << endl;
}
}
};
signed main(){
int N, K; cin >> N >> K;
int D = K * K * K;
Matrix<mint> M(D, D);
REP(n1, K) REP(n2, K) REP(n3, K){
int m1, m2, m3;
//ほ
m1 = (n1 + 1) % K, m2 = n2, m3 = n3;
M.at((n1 * K + n2) * K + n3, (m1 * K + m2) * K + m3) += 1;
//む
m1 = n1, m2 = (n1 + n2) % K, m3 = n3;
M.at((n1 * K + n2) * K + n3, (m1 * K + m2) * K + m3) += 1;
//ら
m1 = n1, m2 = n2, m3 = (n2 + n3) % K;
M.at((n1 * K + n2) * K + n3, (m1 * K + m2) * K + m3) += 1;
}
//M.Print();
Matrix<mint> v(D, 1);
v.at(0, 0) = 1;
v = M.pow(N) * v;
mint ans = 0;
REP(n1, K) REP(n2, K) ans += v.at((n1 * K + n2) * K, 0);
Out(ans);
return 0;
}
Sumitacchan