結果
問題 | No.134 走れ!サブロー君 |
ユーザー | Haar |
提出日時 | 2019-06-25 10:13:02 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 75 ms / 5,000 ms |
コード長 | 4,838 bytes |
コンパイル時間 | 1,869 ms |
コンパイル使用メモリ | 187,896 KB |
実行使用メモリ | 39,424 KB |
最終ジャッジ日時 | 2024-06-22 23:35:43 |
合計ジャッジ時間 | 2,729 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 3 ms
5,376 KB |
testcase_04 | AC | 4 ms
5,376 KB |
testcase_05 | AC | 7 ms
6,976 KB |
testcase_06 | AC | 14 ms
11,392 KB |
testcase_07 | AC | 31 ms
20,016 KB |
testcase_08 | AC | 75 ms
39,420 KB |
testcase_09 | AC | 73 ms
39,424 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> #define LLI long long int #define FOR(v, a, b) for(LLI v = (a); v < (b); ++v) #define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v) #define REP(v, n) FOR(v, 0, n) #define REPE(v, n) FORE(v, 0, n) #define REV(v, a, b) for(LLI v = (a); v >= (b); --v) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it) #define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it) #define EXIST(c,x) ((c).find(x) != (c).end()) #define fst first #define snd second #define popcount __builtin_popcount #define UNIQ(v) (v).erase(unique(ALL(v)), (v).end()) #define bit(i) (1LL<<(i)) #define sz(v) ((LLI)(v).size()) #ifdef DEBUG #include <misc/C++/Debug.cpp> #else #define dump(...) ((void)0) #endif #define gcd __gcd using namespace std; template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;} template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;} template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;} template <typename T, typename U> istream& operator>>(istream &is, pair<T,U> &p){is >> p.first >> p.second; return is;} template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);} template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);} template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);} template <typename Cost = int> class Edge{ public: int from,to; Cost cost; Edge() {} Edge(int to, Cost cost): to(to), cost(cost){} Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){} Edge rev() const {return Edge(to,from,cost);} static bool cmp_to_lt(const Edge &e1, const Edge &e2){return e1.to < e2.to;} static bool cmp_cost_lt(const Edge &e1, const Edge &e2){return e1.cost < e2.cost;} static bool cmp_to_gt(const Edge &e1, const Edge &e2){return e1.to > e2.to;} static bool cmp_cost_gt(const Edge &e1, const Edge &e2){return e1.cost > e2.cost;} friend ostream& operator<<(ostream &os, const Edge &e){ os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")"; return os; } }; template <typename T> class Graph{ public: int N; vector<vector<Edge<T>>> g; Graph(int N): N(N), g(N){} inline void add_edge(int from, int to, T w){ g[from].push_back(Edge<T>(from, to, w)); } inline void add_undirected(int a, int b, T w){ g[a].push_back(Edge<T>(a, b, w)); g[b].push_back(Edge<T>(b, a, w)); } inline const size_t size() const {return g.size();} inline vector<Edge<T>>& operator[](size_t i){return g[i];} inline const vector<Edge<T>>& operator[](size_t i) const {return g[i];} inline const bool empty() const {return g.empty();} inline vector<Edge<T>>& front(){return g.front();} inline vector<Edge<T>>& back(){return g.back();} inline auto begin(){return g.begin();} inline auto end(){return g.end();} }; template <typename T> vector<T> dijkstra(Graph<T> &graph, int src){ int n = graph.size(); vector<T> cost(n, -1); vector<bool> check(n, false); priority_queue<pair<T,int>, vector<pair<T,int>>, greater<pair<T,int>>> pq; cost[src] = 0; pq.push(make_pair(0,src)); while(!pq.empty()){ int i; T d; tie(d,i) = pq.top(); pq.pop(); if(check[i]) continue; check[i] = true; for(auto &e : graph[i]){ if(cost[e.to] < 0){ cost[e.to] = d + e.cost; pq.push(make_pair(cost[e.to], e.to)); }else{ if(cost[e.to] > d+e.cost){ cost[e.to] = min(cost[e.to], d + e.cost); if(!check[e.to]) pq.push(make_pair(cost[e.to], e.to)); } } } } return cost; } int main(){ cin.tie(0); ios::sync_with_stdio(false); int x0,y0,n; while(cin >> x0 >> y0 >> n){ vector<double> x(n+1), y(n+1); vector<double> w(n); REP(i,n) cin >> x[i] >> y[i] >> w[i]; x[n] = x0; y[n] = y0; Graph<double> g((1<<n)*(n+1)); vector<vector<int>> v(1<<n, vector<int>(n+1)); vector<double> wg(1<<n); { int c = 0; REP(i,1<<n){ REP(j,n+1){ v[i][j] = c; ++c; } } } REP(i,1<<n){ REP(j,n){ if(i&bit(j)) wg[i] += w[j]; } } REP(i,1<<n){ REP(j,n+1){ REP(k,n){ double d = abs(x[j]-x[k])+abs(y[j]-y[k]); g.add_edge(v[i][j], v[i&(~bit(k))][k], (wg[i]+100)/120*d); } } } auto dist = dijkstra(g,v[(1<<n)-1][n]); double ans = DBL_MAX; REP(i,n){ double s = dist[v[0][i]]; double d = (abs(x[i]-x[n])+abs(y[i]-y[n]))*100/120; if(s >= 0) chmin(ans, s+d); } REP(i,n) ans += w[i]; cout << setprecision(12) << ans << endl; } return 0; }