結果

問題 No.134 走れ!サブロー君
ユーザー HaarHaar
提出日時 2019-06-25 10:13:02
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 75 ms / 5,000 ms
コード長 4,838 bytes
コンパイル時間 1,869 ms
コンパイル使用メモリ 187,896 KB
実行使用メモリ 39,424 KB
最終ジャッジ日時 2024-06-22 23:35:43
合計ジャッジ時間 2,729 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 3 ms
5,376 KB
testcase_04 AC 4 ms
5,376 KB
testcase_05 AC 7 ms
6,976 KB
testcase_06 AC 14 ms
11,392 KB
testcase_07 AC 31 ms
20,016 KB
testcase_08 AC 75 ms
39,420 KB
testcase_09 AC 73 ms
39,424 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define LLI long long int
#define FOR(v, a, b) for(LLI v = (a); v < (b); ++v)
#define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(LLI v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define fst first
#define snd second
#define popcount __builtin_popcount
#define UNIQ(v) (v).erase(unique(ALL(v)), (v).end())
#define bit(i) (1LL<<(i))
#define sz(v) ((LLI)(v).size())

#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(...) ((void)0)
#endif

#define gcd __gcd

using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}

template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> istream& operator>>(istream &is, pair<T,U> &p){is >> p.first >> p.second; return is;}

template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}


template <typename Cost = int> class Edge{
public:
  int from,to;
  Cost cost;
  Edge() {}
  Edge(int to, Cost cost): to(to), cost(cost){}
  Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}

  Edge rev() const {return Edge(to,from,cost);}
  
  static bool cmp_to_lt(const Edge &e1, const Edge &e2){return e1.to < e2.to;}
  static bool cmp_cost_lt(const Edge &e1, const Edge &e2){return e1.cost < e2.cost;}
  static bool cmp_to_gt(const Edge &e1, const Edge &e2){return e1.to > e2.to;}
  static bool cmp_cost_gt(const Edge &e1, const Edge &e2){return e1.cost > e2.cost;}
  friend ostream& operator<<(ostream &os, const Edge &e){
    os << "(FROM: " << e.from << "," << "TO: " << e.to << "," << "COST: " << e.cost << ")";
    return os;
  }
};

template <typename T> class Graph{
public:
  int N;
  vector<vector<Edge<T>>> g;
  Graph(int N): N(N), g(N){}

  inline void add_edge(int from, int to, T w){
    g[from].push_back(Edge<T>(from, to, w));
  }

  inline void add_undirected(int a, int b, T w){
    g[a].push_back(Edge<T>(a, b, w));
    g[b].push_back(Edge<T>(b, a, w));
  }

  inline const size_t size() const {return g.size();}
  inline vector<Edge<T>>& operator[](size_t i){return g[i];}
  inline const vector<Edge<T>>& operator[](size_t i) const {return g[i];}
  inline const bool empty() const {return g.empty();}
  inline vector<Edge<T>>& front(){return g.front();}
  inline vector<Edge<T>>& back(){return g.back();}
  inline auto begin(){return g.begin();}
  inline auto end(){return g.end();}
};


template <typename T>
vector<T> dijkstra(Graph<T> &graph, int src){
  int n = graph.size();
  vector<T> cost(n, -1);
  vector<bool> check(n, false);
  priority_queue<pair<T,int>, vector<pair<T,int>>, greater<pair<T,int>>> pq;

  cost[src] = 0;
  pq.push(make_pair(0,src));

  while(!pq.empty()){
    int i; T d;
    tie(d,i) = pq.top(); pq.pop();

    if(check[i]) continue;
    check[i] = true;

    for(auto &e : graph[i]){
      if(cost[e.to] < 0){
	cost[e.to] = d + e.cost;
	pq.push(make_pair(cost[e.to], e.to));
      }else{
	if(cost[e.to] > d+e.cost){
	  cost[e.to] = min(cost[e.to], d + e.cost);
	  if(!check[e.to]) pq.push(make_pair(cost[e.to], e.to));
	}
      }
    }
  }
  
  return cost;
}


int main(){
  cin.tie(0);
  ios::sync_with_stdio(false);

  int x0,y0,n;
  while(cin >> x0 >> y0 >> n){
    vector<double> x(n+1), y(n+1);
    vector<double> w(n);

    REP(i,n) cin >> x[i] >> y[i] >> w[i];
    x[n] = x0;
    y[n] = y0;

    Graph<double> g((1<<n)*(n+1));

    vector<vector<int>> v(1<<n, vector<int>(n+1));
    vector<double> wg(1<<n);

    {
      int c = 0;
      REP(i,1<<n){
	REP(j,n+1){
	  v[i][j] = c;
	  ++c;
	}
      }
    }

    REP(i,1<<n){
      REP(j,n){
	if(i&bit(j)) wg[i] += w[j];
      }
    }
    
    

    REP(i,1<<n){
      REP(j,n+1){
	REP(k,n){
	  double d = abs(x[j]-x[k])+abs(y[j]-y[k]);
	  g.add_edge(v[i][j], v[i&(~bit(k))][k], (wg[i]+100)/120*d);
	}
      }
    }

    auto dist = dijkstra(g,v[(1<<n)-1][n]);

    double ans = DBL_MAX;
    REP(i,n){
      double s = dist[v[0][i]];
      double d = (abs(x[i]-x[n])+abs(y[i]-y[n]))*100/120;
      if(s >= 0) chmin(ans, s+d);
    }

    REP(i,n) ans += w[i];

    cout << setprecision(12) << ans << endl;
  }

  return 0;
}
0