結果

問題 No.843 Triple Primes
ユーザー yuppe19 😺yuppe19 😺
提出日時 2019-06-29 10:02:26
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 471 ms / 2,000 ms
コード長 2,566 bytes
コンパイル時間 875 ms
コンパイル使用メモリ 92,920 KB
実行使用メモリ 36,208 KB
最終ジャッジ日時 2024-09-19 14:12:41
合計ジャッジ時間 13,476 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 449 ms
36,200 KB
testcase_02 AC 8 ms
5,376 KB
testcase_03 AC 7 ms
5,376 KB
testcase_04 AC 14 ms
5,376 KB
testcase_05 AC 7 ms
5,376 KB
testcase_06 AC 13 ms
5,376 KB
testcase_07 AC 450 ms
36,172 KB
testcase_08 AC 449 ms
36,072 KB
testcase_09 AC 471 ms
36,120 KB
testcase_10 AC 465 ms
35,980 KB
testcase_11 AC 457 ms
36,096 KB
testcase_12 AC 443 ms
36,008 KB
testcase_13 AC 448 ms
36,172 KB
testcase_14 AC 450 ms
36,104 KB
testcase_15 AC 446 ms
36,096 KB
testcase_16 AC 454 ms
36,172 KB
testcase_17 AC 1 ms
5,376 KB
testcase_18 AC 1 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 222 ms
19,768 KB
testcase_21 AC 104 ms
11,604 KB
testcase_22 AC 448 ms
36,208 KB
testcase_23 AC 444 ms
35,968 KB
testcase_24 AC 218 ms
19,592 KB
testcase_25 AC 106 ms
11,564 KB
testcase_26 AC 450 ms
36,148 KB
testcase_27 AC 26 ms
5,464 KB
testcase_28 AC 469 ms
36,012 KB
testcase_29 AC 221 ms
19,700 KB
testcase_30 AC 454 ms
36,104 KB
testcase_31 AC 53 ms
7,384 KB
testcase_32 AC 27 ms
5,376 KB
testcase_33 AC 218 ms
19,704 KB
testcase_34 AC 221 ms
19,696 KB
testcase_35 AC 447 ms
35,980 KB
testcase_36 AC 109 ms
11,376 KB
testcase_37 AC 447 ms
36,136 KB
testcase_38 AC 445 ms
36,112 KB
testcase_39 AC 449 ms
35,992 KB
testcase_40 AC 2 ms
5,376 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 449 ms
36,100 KB
testcase_43 AC 444 ms
36,108 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <cmath>
#include <iostream>
#include <map>
#include <vector>
using namespace std;
using u64 = uint64_t;

vector<bool> sieve(int x) {
  vector<bool> is_prime(x+1, true);
  is_prime[0] = is_prime[1] = false;
  for(int p=2; p*p<=x; ++p) {
    if(is_prime[p]) {
      for(int q=p*p; q<=x; q+=p) {
        is_prime[q] = false;
      }
    }
  }
  return is_prime;
}

constexpr u64 O = 17,
              M = (1ULL << 51) * 4011 + 1,
              M2 = M - 2,
              R2 = static_cast<u64>(-__uint128_t(M) % M);

constexpr inline u64 MR(__uint128_t t) {
  u64 r = u64((__uint128_t(u64(t) * M2) * M + t) >> 64);
  return r < M ? r : r - M;
}

constexpr inline u64 init(__uint128_t x) {
  return MR(x * R2);
}

constexpr inline u64 mod_mul(__uint128_t x, u64 y) {
  return MR(x * y);
}

map<pair<u64, u64>, u64> cache;

inline u64 mod_pow(u64 a, u64 n) {
  auto key = make_pair(a, n);
  if(cache.count(key)) { return cache[key]; }
  u64 res = init(1);
  for(; n; n>>=1) {
    if(n & 1) { res = mod_mul(res, a); }
    a = mod_mul(a, a);
  }
  return cache[key] = res;
}

void myfmt(vector<u64> &a, bool inv) {
  size_t n = a.size();
  if(n == 1) { return; }
  size_t m = n / 2;
  vector<u64> a0(m), a1(m);
  for(size_t i=0, j=0; i<m; ++i) {
    a0[i] = a[j++];
    a1[i] = a[j++];
  }
  myfmt(a0, inv);
  myfmt(a1, inv);
  u64 z = mod_pow(init(O), (M-1)/n);
  if(inv) { z = mod_pow(z, M2); }
  u64 pz = init(1);
  for(size_t i=0, k=0; k<m; ++i, ++k) {
    a[k] = a0[i] + mod_mul(a1[i], pz);
    if(a[k] >= M) { a[k] -= M; }
    pz = mod_mul(pz, z);
  }
  for(size_t i=0, k=m; k<n; ++i, ++k) {
    a[k] = a0[i] + mod_mul(a1[i], pz);
    if(a[k] >= M) { a[k] -= M; }
    pz = mod_mul(pz, z);
  }
}

void fmt(vector<u64> &a) {
  myfmt(a, false);
}

void ifmt(vector<u64> &a) {
  myfmt(a, true);
  size_t n = a.size();
  u64 inv = mod_pow(init(n), M2);
  for(size_t i=0; i<n; ++i) {
    a[i] = mod_mul(a[i], inv);
  }
}

vector<u64> convol2(vector<u64> &a) {
  size_t n = 1;
  while(n < a.size() + a.size()) { n <<= 1; }
  a.resize(n);
  fmt(a);
  vector<u64> c(n);
  for(size_t i=0; i<n; ++i) {
    c[i] = mod_mul(a[i], a[i]);
  }
  ifmt(c);
  return c;
}

int main(void) {
  int N; scanf("%d", &N);
  constexpr u64 init1 = init(1);
  vector<bool> is_prime = sieve(N);
  vector<u64> a(N+1);
  for(int p=2; p<=N; ++p) {
    if(is_prime[p]) { a[p] = init1; }
  }
  vector<u64> c = convol2(a);
  size_t cn = c.size();
  u64 res = 0;
  for(int p=2; p<=N && p*p<=cn; ++p) {
    if(is_prime[p]) {
      res += MR(c[p*p]);
    }
  }
  printf("%lu\n", res);
  return 0;
}
0