結果
| 問題 |
No.848 なかよし旅行
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-07-13 11:52:05 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 163 ms / 2,000 ms |
| コード長 | 4,594 bytes |
| コンパイル時間 | 15,692 ms |
| コンパイル使用メモリ | 379,108 KB |
| 実行使用メモリ | 11,904 KB |
| 最終ジャッジ日時 | 2024-11-08 01:00:01 |
| 合計ジャッジ時間 | 18,163 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 26 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
(0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
}};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
/*
* Dijkstra's algorithm.
* Verified by: AtCoder ABC035 (http://abc035.contest.atcoder.jp/submissions/676539)
*/
struct Dijkstra {
edges: Vec<Vec<(usize, i64)>>, // adjacent list representation
}
/*
* Code from https://doc.rust-lang.org/std/collections/binary_heap/
*/
#[derive(Copy, Clone, Eq, PartialEq)]
struct State {
cost: i64,
position: usize,
}
// The priority queue depends on `Ord`.
// Explicitly implement the trait so the queue becomes a min-heap
// instead of a max-heap.
impl Ord for State {
fn cmp(&self, other: &State) -> Ordering {
// Notice that the we flip the ordering here
match other.cost.cmp(&self.cost) {
std::cmp::Ordering::Equal => other.position.cmp(&self.position),
x => x,
}
}
}
// `PartialOrd` needs to be implemented as well.
impl PartialOrd for State {
fn partial_cmp(&self, other: &State) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Dijkstra {
fn new(n: usize) -> Self {
Dijkstra { edges: vec![Vec::new(); n] }
}
fn add_edge(&mut self, from: usize, to: usize, cost: i64) {
self.edges[from].push((to, cost));
}
/*
* This function returns a Vec consisting of the distances from vertex source.
*/
fn solve(&self, source: usize, inf: i64) -> Vec<i64> {
let n = self.edges.len();
let mut d = vec![inf; n];
let mut que = std::collections::BinaryHeap::new();
que.push(State {cost: 0, position: source});
while let Some(State {cost, position: pos}) = que.pop() {
if d[pos] <= cost {
continue;
}
d[pos] = cost;
for adj in &self.edges[pos] {
que.push(State {cost: cost + adj.1, position: adj.0});
}
}
return d;
}
}
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {
($($format:tt)*) => (write!(out,$($format)*).unwrap());
}
input! {
n: usize, m: usize, p: usize1, q: usize1, t: i64,
abc: [(usize1, usize1, i64); m],
}
let mut dijk = Dijkstra::new(n);
for &(a, b, c) in &abc {
dijk.add_edge(a, b, c);
dijk.add_edge(b, a, c);
}
let mut mi = t + 1;
const INF: i64 = 1 << 50;
let z_dist = dijk.solve(0, INF);
let p_dist = dijk.solve(p, INF);
let q_dist = dijk.solve(q, INF);
if z_dist[p] + p_dist[q] + z_dist[q] <= t {
puts!("{}\n", t);
return;
}
for i in 0..n {
for j in 0..n {
let sep = max(p_dist[i] + p_dist[j], q_dist[i] + q_dist[j]);
if z_dist[i] + sep + z_dist[j] <= t {
mi = min(mi, sep);
}
}
}
puts!("{}\n", t - mi);
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}