結果

問題 No.849 yuki国の分割統治
ユーザー snteasntea
提出日時 2019-07-31 23:09:07
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 9,627 bytes
コンパイル時間 3,201 ms
コンパイル使用メモリ 221,764 KB
実行使用メモリ 21,504 KB
最終ジャッジ日時 2024-10-07 02:58:03
合計ジャッジ時間 6,880 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 58 ms
7,296 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 AC 145 ms
16,128 KB
testcase_17 AC 70 ms
6,824 KB
testcase_18 AC 150 ms
16,768 KB
testcase_19 AC 95 ms
8,832 KB
testcase_20 AC 129 ms
13,056 KB
testcase_21 AC 55 ms
6,816 KB
testcase_22 AC 103 ms
14,848 KB
testcase_23 AC 99 ms
13,568 KB
testcase_24 AC 63 ms
8,320 KB
testcase_25 AC 159 ms
19,200 KB
testcase_26 AC 2 ms
6,816 KB
testcase_27 AC 1 ms
6,816 KB
testcase_28 AC 2 ms
6,816 KB
testcase_29 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:442:35: warning: narrowing conversion of 'a' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
  442 |                         mat[0] = {a, c};
      |                                   ^
main.cpp:442:35: warning: narrowing conversion of 'a' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
main.cpp:442:38: warning: narrowing conversion of 'c' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
  442 |                         mat[0] = {a, c};
      |                                      ^
main.cpp:442:38: warning: narrowing conversion of 'c' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
main.cpp:443:35: warning: narrowing conversion of 'b' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
  443 |                         mat[1] = {b, d};
      |                                   ^
main.cpp:443:35: warning: narrowing conversion of 'b' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
main.cpp:443:38: warning: narrowing conversion of 'd' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
  443 |                         mat[1] = {b, d};
      |                                      ^
main.cpp:443:38: warning: narrowing conversion of 'd' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
main.cpp:464:51: warning: narrowing conversion of 'a' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
  464 |                                         mat[0] = {a, c};
      |                                                   ^
main.cpp:464:51: warning: narrowing conversion of 'a' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
main.cpp:464:54: warning: narrowing conversion of 'c' from 'LL' {aka 'long long int'} to 'double' [-Wnarrowing]
  464 |                                         mat[0] = {a, c};
      |                                                      ^
main.cpp:464:54: warning: narrowing conversion of 'c' from 'LL' {aka 'long long int'} to 'double' [-W

ソースコード

diff #

#ifdef LOCAL111
#else
	#pragma GCC optimize ("O3")
	#define NDEBUG
#endif
// #define _USE_MATH_DEFINES
#include <bits/stdc++.h>
const int INF = 1e9;
using namespace std;
template<typename T, typename U> ostream& operator<< (ostream& os, const pair<T,U>& p) { os << '(' << p.first << ' ' << p.second << ')'; return os; }

#define endl '\n'
#define ALL(a)  (a).begin(),(a).end()
#define SZ(a) int((a).size())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define RFOR(i,a,b) for (int i=(b)-1;i>=(a);i--)
#define REP(i,n)  FOR(i,0,n)
#define RREP(i,n) for (int i=(n)-1;i>=0;i--)
#ifdef LOCAL111
	#define DEBUG(x) cout<<#x<<": "<<(x)<<endl
	template<typename T> void dpite(T a, T b){ for(T ite = a; ite != b; ite++) cout << (ite == a ? "" : " ") << *ite; cout << endl;}
#else
	#define DEBUG(x) true
	template<typename T> void dpite(T a, T b){ return; }
#endif
#define F first
#define S second
#define SNP string::npos
#define WRC(hoge) cout << "Case #" << (hoge)+1 << ": "
template<typename T> void pite(T a, T b){ for(T ite = a; ite != b; ite++) cout << (ite == a ? "" : " ") << *ite; cout << endl;}
template<typename T> bool chmax(T& a, T b){if(a < b){a = b; return true;} return false;}
template<typename T> bool chmin(T& a, T b){if(a > b){a = b; return true;} return false;}

template<typename T>
vector<T> make_v(size_t a){return vector<T>(a);}

template<typename T,typename... Ts>
auto make_v(size_t a,Ts... ts){
  return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));
}

template<typename T,typename U,typename... V>
typename enable_if<is_same<T, U>::value!=0>::type
fill_v(U &u,const V... v){u=U(v...);}

template<typename T,typename U,typename... V>
typename enable_if<is_same<T, U>::value==0>::type
fill_v(U &u,const V... v){
  for(auto &e:u) fill_v<T>(e,v...);
}

const array<int, 4> dx = {0, 1, 0, -1};
const array<int, 4> dy = {1, 0, -1, 0};


typedef long long int LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;

void ios_init(){
	//cout.setf(ios::fixed);
	//cout.precision(12);
#ifdef LOCAL111
	return;
#endif
	ios::sync_with_stdio(false); cin.tie(0);
}


#define EPS 1e-9

//library
template<typename T>
class Matrix {
public:
	vector<vector<T> > v;
	int n,m;
	Matrix(int n){
		this->n = this->m = n;
		v.resize(n,vector<T>(n,0));
	}

	Matrix(int n, int m){
		this -> n = n;
		this -> m = m;
		v.resize(n,vector<T>(m,0));
	}

	size_t size() const {
		return v.size();
	}

	int row() const {
		return n;
	}

	int col() const {
		return m;
	}

	Matrix operator+ (Matrix x) const {
		Matrix res(n,m);
		for(int i = 0; i < n; i++){
			for(int j = 0; j < m; j++){
				res.v[i][j] = x.v[i][j]+v[i][j];
			}
		}
		return res;
	}

	Matrix operator-(Matrix x) const {
		Matrix res(n,m);
		for(int i = 0; i < n; i++){
			for(int j = 0; j < m; j++){
				res.v[i][j] = v[i][j]-x.v[i][j];
			}
		}
	}

	Matrix operator*(Matrix x) const {
		Matrix res(n,x.m);
		for(int i = 0; i < n; i++){
			for(int j = 0; j < x.m; j++){
				for(int k = 0; k < m; k++){
					res.v[i][j] += v[i][k]*x.v[k][j];
				}
			}
		}
		return res;
	}

	Matrix operator-() const  {
		Matrix res = *this;
		for(int i = 0; i < (int)v.size(); ++i) {
			for(int j = 0; j < (int)v[i].size(); ++j) {
				res [i][j] *= -1;
			}
		}
		return res;
	}

	vector<T> operator*(vector<T> x) const {
		assert(x.size() == v.size());
		vector<T> res(v.size());
		for(int i = 0; i < n; i++){
			T tmp = 0;
			for(int j = 0; j < m; j++){
				tmp += v[i][j]*x[j];
			}
			res[i] = tmp;
		}
		return res;
	}

	Matrix pow(long long x) const {
		assert(n == m);
		Matrix m = (*this);
		Matrix res(n);
		for(int i = 0; i < n; i++) res[i][i] = 1;
		while(x != 0) {
			if(x&1) {
				res = res*m;
			}
			m = m*m;
			x >>= 1;
		}
		return res;
	}

	vector<T>& operator[](int x){
		return v[x];
	}

	const vector<T>& operator[](int x) const {
		return v[x];
	}

	Matrix<T> inverse() const{
		assert(n == m);
		Matrix res(n);
		for(int i = 0; i < n; ++i) {
			res[i][i] = 1;
		}
		
		// vector<pair<int,int>> swap_log;
		Matrix<T> mat = *this;
		for(int k = 0; k < n; ++k) {
			T max_val = abs(mat[k][k]);
			int max_point = k;
			for(int i = k+1; i < n; ++i) {
				if(max_val < abs(mat[i][k])){
					max_val = abs(mat[i][k]);
					max_point = i;
				}
			}
			swap(mat[k],mat[max_point]);
			swap(res[k],res[max_point]);
			// swap_log.emplace_back(k,max_point);
			for(int i = k+1; i < n; ++i) {
				T m = mat[i][k]/mat[k][k];
				for(int j = 0; j < n; ++j) {
					mat[i][j] -= m*mat[k][j];
					res[i][j] -= m*res[k][j];
				}
			}
		}
		
		for(int k = n-1; k >= 0; --k) {
			for(int i = 0; i < k; ++i) {
				T m = mat[i][k]/mat[k][k];
				for(int j = 0; j < n; ++j) {
					// mat[i][j] -= mat[k][j]*m;
					res[i][j] -= res[k][j]*m;
				}
			}
		}
		for(int i = 0; i < n; ++i) {
			for(int j = 0; j < n; ++j) {
				res[i][j] /= mat[i][i];
			}
		}
		// for(auto&& e : swap_log) {
		// 	swap(res[e.first],res[e.second]);
		// }
		return res;
	}

	T det() const {
		Matrix<T> mat = *this;
		T res = 1;
		for(int k = 0; k < n; ++k) {
			T max_val = abs(mat[k][k]);
			int max_point = k;
			for(int i = k+1; i < n; ++i) {
				if(max_val < abs(mat[i][k])){
					max_val = abs(mat[i][k]);
					max_point = i;
				}
			}
			swap(mat[k],mat[max_point]);
			if(k != max_point) res *= -1;
			for(int i = k+1; i < n; ++i) {
				T m = mat[i][k]/mat[k][k];
				for(int j = 0; j < n; ++j) {
					mat[i][j] -= m*mat[k][j];
				}
			}
		}
		for(int i = 0; i < n; ++i) {
			res *= mat[i][i];
		}
		return res;
	}

	pair<T, vector<T>> getMaxEigenvalue(int iterNum = 10) const {
		assert(n == m);
		vector<T> xk_(n, 1);
		xk_ = (*this).pow(iterNum)*xk_;
		auto xk = (*this)*xk_;
		T xk_xk = 0, xk_xk_ = 0;
		for(int i = 0; i < n; i++) {
			xk_xk += xk[i]*xk[i];
			xk_xk_ += xk[i]*xk_[i];
		}
		T xkAbs = sqrt(xk_xk);
		auto res = xk;
		for(auto&& e : res) {
			e /= xkAbs;
		}
		return { xk_xk/xk_xk_, res };
	}

	void debug() const {
		for(auto&& ee : v) {
			for(auto&& e : ee) {
				cout << e << ' ';
			}
			cout << endl;
		}
		cout << endl;
	}
};

template<typename T>
Matrix<T> companion_pow(const Matrix<T>& A, long long m) {
	assert(A.col() == A.row());
	int n = A.col();
	Matrix<T> u(1, n), Ak = A;
	u[0][n-1] = 1;
	while(m > 0) {
		if(m&1) {
			u = u*Ak;
		}
		Matrix<T> a(1, n);
		for(int i = 0; i < n; ++i) {
			a[0][i] = Ak[n-1][i];
		}
		a = a*Ak;
		for(int i = n-1; i >= 0; --i) {
			for(int j = 0; j < n; ++j) {
				Ak[i][j] = a[0][j];
			}
			auto a00 = a[0][0];
			for(int j = 0; j < n-1; ++j) {
				a[0][j] = a[0][j+1]+A[0][j]*a00;
			}
			a[0][n-1] = A[0][n-1]*a00;
		}
		m >>= 1;
	}
	Matrix<T> res(n);
	for(int i = n-1; i >= 0; --i) {
		for(int j = 0; j < n; ++j) {
			res[i][j] = u[0][j];
		}
		auto u00 = u[0][0];
		for(int j = 0; j < n-1; ++j) {
			u[0][j] = u[0][j+1]+A[0][j]*u00;
		}
		u[0][n-1] = A[0][n-1]*u00;
	}
	return res;
}

//library

class UFTree {
//private:
public:
	vector<int> par;
	vector<int> rank;
	vector<int> num;

//public:
	UFTree(int n)
	{
		par = vector<int>(n);
		rank = vector<int>(n);
		num = vector<int>(n);
		for(int i = 0; i < n; i++){
			par[i] = i;
			rank[i] = 0;
			num[i] = 1;
		}
	}

	int find(int x)
	{
		if(par[x] == x){
			return x;
		}else{
			return par[x] = find(par[x]);
		}
	}

	void unite(int x, int y)
	{
		x = find(x);
		y = find(y);
		if(x == y) return;
		if(rank[x] < rank[y]){
			par[x] = y;
			num[y] += num[x];
		}else{
			par[y] = x;
			num[x] += num[y];
			if(rank[x] == rank[y])	rank[x]++;
		}
	}

	int count(int x)
	{
		return num[find(x)];
	}

	bool same(int x, int y)
	{
		return find(x) == find(y);
	}
};
//library



template <typename T>
long long gcd(T x, T y){
	return y==0 ? x : gcd(y, x%y);
}


int main()
{
	ios_init();
	LL a, b, c, d;
	while(cin >> a >> b >> c >> d) {
		using P = pair<LL, LL>;
		int n;
		cin >> n;
		vector<LL> x(n), y(n);
		REP(i, n) cin >> x[i] >> y[i];
		const double eps = 1e-15;
		if(a * d == b * c) {
			// if(b == 0) {
			// 	assert(d == 0);
			// 	int e = gcd(a, c);

			// } else if(a == 0) {
			// 	assert(c == 0);
			// 	int f = gcd(d, d);
			// } else {
			LL e = gcd(a, c), f = gcd(b, d);
			DEBUG(e); DEBUG(f);
			map<P, vector<int>> ma;
			REP(i, n) {
				int t;
				if(e == 0) {
					t = y[i] / f;
				} else if(f == 0) {
					t = x[i] / e;
				} else {
					t = min(x[i] / e, y[i] / f);
				}
				P ke = {x[i] - t * e, y[i] - t * f};
				DEBUG(ke);
				ma[ke].push_back(i);
			}

			UFTree uf(n);
			for(auto&& e : ma) {
				REP(i, SZ(e.S) - 1) {
					uf.unite(e.S[i], e.S[i+1]);
				}
			}
			set<int> se;
			REP(i, n) {
				se.insert(uf.find(i));
			}
			cout << se.size() << endl;
			// }
		} else {
			Matrix<double> mat(2, 2);
			mat[0] = {a, c};
			mat[1] = {b, d};
			mat = mat.inverse();
			Matrix<LL> mai(2);
			LL det = abs(a * d - c * b);
			DEBUG(det);
			REP(i, 2) REP(j, 2) {
				mai[i][j] = round(mat[i][j] * det);
				DEBUG(mai[i][j]);
			}
			DEBUG(det);

			map<P, vector<int>> ma;
			DEBUG(det);
			REP(i, n) {
				DEBUG(i);
				vector<LL> v = {x[i], y[i]};
				DEBUG(x[i]); DEBUG(y[i]);
				auto st = mai * v;
				dpite(ALL(st));
				{
					Matrix<double> mat(2, 2);
					mat[0] = {a, c};
					mat[1] = {b, d};
					vector<double> st0(2);
					REP(i, SZ(st)) st0[i] = st[i];
					auto v = mat * st0;
					dpite(ALL(v));
				}
				LL mx = st[0] % det;
				if(mx < 0) mx += det;
				LL my = st[1] % det;
				if(my < 0) my += det;
				DEBUG(mx); DEBUG(my);
				ma[{mx, my}].push_back(i);
			}

			UFTree uf(n);
			for(auto&& e : ma) {
				DEBUG(e.F);
				REP(i, SZ(e.S) - 1) {
					uf.unite(e.S[i], e.S[i+1]);
				}
			}
			set<int> se;
			REP(i, n) {
				se.insert(uf.find(i));
			}
			cout << se.size() << endl;
		}
	}
	return 0;
}
0