結果
問題 | No.665 Bernoulli Bernoulli |
ユーザー | ferin |
提出日時 | 2019-08-11 09:05:53 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 11 ms / 2,000 ms |
コード長 | 6,057 bytes |
コンパイル時間 | 3,789 ms |
コンパイル使用メモリ | 181,972 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-22 11:42:28 |
合計ジャッジ時間 | 2,901 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 11 ms
5,376 KB |
testcase_04 | AC | 10 ms
5,376 KB |
testcase_05 | AC | 11 ms
5,376 KB |
testcase_06 | AC | 10 ms
5,376 KB |
testcase_07 | AC | 10 ms
5,376 KB |
testcase_08 | AC | 10 ms
5,376 KB |
testcase_09 | AC | 10 ms
5,376 KB |
testcase_10 | AC | 10 ms
5,376 KB |
testcase_11 | AC | 10 ms
5,376 KB |
testcase_12 | AC | 11 ms
5,376 KB |
testcase_13 | AC | 11 ms
5,376 KB |
testcase_14 | AC | 11 ms
5,376 KB |
testcase_15 | AC | 11 ms
5,376 KB |
testcase_16 | AC | 10 ms
5,376 KB |
testcase_17 | AC | 11 ms
5,376 KB |
testcase_18 | AC | 11 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; // #define int ll using PII = pair<ll, ll>; #define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i) #define REP(i, n) FOR(i, 0, n) #define ALL(x) x.begin(), x.end() template<typename T> T &chmin(T &a, const T &b) { return a = min(a, b); } template<typename T> T &chmax(T &a, const T &b) { return a = max(a, b); } template<typename T> bool IN(T a, T b, T x) { return a<=x&&x<b; } template<typename T> T ceil(T a, T b) { return a/b + !!(a%b); } template<typename T> vector<T> make_v(size_t a) { return vector<T>(a); } template<typename T,typename... Ts> auto make_v(size_t a,Ts... ts) { return vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...)); } template<typename T,typename V> typename enable_if<is_class<T>::value==0>::type fill_v(T &t, const V &v) { t=v; } template<typename T,typename V> typename enable_if<is_class<T>::value!=0>::type fill_v(T &t, const V &v ) { for(auto &e:t) fill_v(e,v); } template<class S,class T> ostream &operator <<(ostream& out,const pair<S,T>& a) { out<<'('<<a.first<<','<<a.second<<')'; return out; } template<class T> ostream &operator <<(ostream& out,const vector<T>& a){ out<<'['; for(const T &i: a) out<<i<<','; out<<']'; return out; } template<class T> ostream &operator <<(ostream& out, const set<T>& a) { out<<'{'; for(const T &i: a) out<<i<<','; out<<'}'; return out; } template<class T, class S> ostream &operator <<(ostream& out, const map<T,S>& a) { out<<'{'; for(auto &i: a) out<<i<<','; out<<'}'; return out; } int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}; // DRUL const int INF = 1<<30; const ll LLINF = 1LL<<60; const ll MOD = 1000000007; template<ll MOD> struct modint { ll x; modint(): x(0) {} modint(ll y) : x(y>=0 ? y%MOD : y%MOD+MOD) {} static constexpr ll mod() { return MOD; } // e乗 modint pow(ll e) { ll a = 1, p = x; while(e > 0) { if(e%2 == 0) {p = (p*p) % MOD; e /= 2;} else {a = (a*p) % MOD; e--;} } return modint(a); } modint inv() const { ll a=x, b=MOD, u=1, y=1, v=0, z=0; while(a) { ll q = b/a; swap(z -= q*u, u); swap(y -= q*v, v); swap(b -= q*a, a); } return z; } // Comparators bool operator <(modint b) { return x < b.x; } bool operator >(modint b) { return x > b.x; } bool operator<=(modint b) { return x <= b.x; } bool operator>=(modint b) { return x >= b.x; } bool operator!=(modint b) { return x != b.x; } bool operator==(modint b) { return x == b.x; } // Basic Operations modint operator+(modint r) const { return modint(*this) += r; } modint operator-(modint r) const { return modint(*this) -= r; } modint operator*(modint r) const { return modint(*this) *= r; } modint operator/(modint r) const { return modint(*this) /= r; } modint &operator+=(modint r) { if((x += r.x) >= MOD) x -= MOD; return *this; } modint &operator-=(modint r) { if((x -= r.x) < 0) x += MOD; return *this; } modint &operator*=(modint r) { #if !defined(_WIN32) || defined(_WIN64) x = x * r.x % MOD; return *this; #endif unsigned long long y = x * r.x; unsigned xh = (unsigned) (y >> 32), xl = (unsigned) y, d, m; asm( "divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (MOD) ); x = m; return *this; } modint &operator/=(modint r) { return *this *= r.inv(); } // increment, decrement modint operator++() { x++; return *this; } modint operator++(signed) { modint t = *this; x++; return t; } modint operator--() { x--; return *this; } modint operator--(signed) { modint t = *this; x--; return t; } }; using mint = modint<1000000007>; template<class T> mint operator*(T l, mint r) { return mint(l) *= r; } template<class T> mint operator+(T l, mint r) { return mint(l) += r; } template<class T> mint operator-(T l, mint r) { return mint(l) -= r; } template<class T> mint operator/(T l, mint r) { return mint(l) /= r; } template<class T> bool operator==(T l, mint r) { return mint(l) == r; } template<class T> bool operator!=(T l, mint r) { return mint(l) != r; } // Input/Output ostream &operator<<(ostream& os, mint a) { return os << a.x; } istream &operator>>(istream& is, mint &a) { return is >> a.x; } string to_frac(mint v) { static map<ll, PII> mp; if(mp.empty()) { mp[0] = mp[mint::mod()] = {0, 1}; FOR(i, 2, 1001) FOR(j, 1, i) if(__gcd(i, j) == 1) { mp[(mint(i) / j).x] = {i, j}; } } auto itr = mp.lower_bound(v.x); if(itr != mp.begin() && v.x - prev(itr)->first < itr->first - v.x) --itr; string ret = to_string(itr->second.first + itr->second.second * ((int)v.x - itr->first)); if(itr->second.second > 1) { ret += '/'; ret += to_string(itr->second.second); } return ret; } // x座標が相異なるn+1点(x_i,y_i)を通るn次以下の多項式f(T)の値を返す // x_i = a + i*d 0<=i<=n (等差数列) // 0割りを起こさないようにTが小さいときに注意 // O(nlog(MOD)) mint lagrange_interpolation_arithmetic(mint a, mint d, vector<mint> y, mint T) { const ll n = y.size() - 1; mint ret = 0, ft = 1; REP(i, n+1) ft *= T-(a+d*i); // f_0(x_0) mint f = 1; FOR(i, 1, n+1) f *= -1*i*d; ret += y[0] / f * ft / (T-a); // f_i(x_i) → f_{i+1}(x_{i+1}) REP(i, n) { f *= d*(i+1) / (d*(i-n)); ret += y[i+1] / f * ft / (T-a-d*(i+1)); } return ret; } signed main(void) { cin.tie(0); ios::sync_with_stdio(false); ll n, k; cin >> n >> k; vector<mint> y(k+2); y[0] = 0; FOR(i, 1, k+2) y[i] = y[i-1] + mint(i).pow(k); if(n <= k+1) { cout << y[n] << endl; } else { cout << lagrange_interpolation_arithmetic(0, 1, y, n) << endl; } return 0; }