結果
| 問題 |
No.187 中華風 (Hard)
|
| コンテスト | |
| ユーザー |
pazzle1230
|
| 提出日時 | 2019-08-11 20:21:45 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,999 bytes |
| コンパイル時間 | 1,768 ms |
| コンパイル使用メモリ | 175,148 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-09-14 00:26:04 |
| 合計ジャッジ時間 | 5,472 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 24 WA * 1 |
ソースコード
#include <bits/stdc++.h>
::std::int64_t gcd(::std::int64_t a, ::std::int64_t b) {
while (b != 0) {
::std::swap(a, b);
b = b % a;
}
return a;
}
::std::int64_t lcm(::std::int64_t a, ::std::int64_t b) {
return a / gcd(a, b) * b;
}
::std::pair<::std::int64_t, ::std::int64_t> extgcd(::std::int64_t a, ::std::int64_t b) {
::std::pair<::std::int64_t, ::std::int64_t> pa(1, 0), pb(0, 1);
while (b != 0) {
::std::swap(a, b); ::std::swap(pa, pb);
pb = ::std::make_pair(pb.first - pa.first * (b / a), pb.second - pa.second * (b / a));
b = b % a;
}
return pa;
}
// return x (mod lcm(m_i)) and lcm(m_i) that satisfies x ≡ b_i (mod m_i) (中国剰余定理)
// if there isn't the answer, return (-1, -1)
// O(N log M)
::std::pair<::std::int64_t, ::std::int64_t> CRT(const ::std::vector<::std::int64_t> &b, ::std::vector<::std::int64_t> &m) {
::std::int64_t ret = 0, M = 1;
for (::std::size_t i = 0; i < b.size(); ++i) {
::std::int64_t p, q;
::std::int64_t d = gcd(M, m[i]);
::std::tie(p, q) = extgcd(M, m[i]);
if ((b[i] - ret) % d != 0) return ::std::make_pair(-1, -1);
::std::int64_t tmp = (b[i] - ret) / d * p % (m[i] / d);
ret += M * tmp;
M *= m[i] / d;
}
return ::std::make_pair((ret + M) % M, M);
}
// Preprocessing for Garner algorithm
// make the elements of m coprime
// O(N^2)
std::int64_t pre_garner(std::vector<std::int64_t>& b, std::vector<std::int64_t>& m, const std::int64_t MOD) {
std::int64_t res = 1;
for (int i = 0; i < b.size(); i++) {
for (int j = i + 1; j < b.size(); j++) {
std::int64_t g = gcd(m[i], m[j]);
if ((b[i] - b[j]) % g != 0) return -1;
m[i] /= g; m[j] /= g;
std::int64_t gi = gcd(m[i], g), gj = g / gi;
do {
g = gcd(gi, gj);
gi *= g; gj /= g;
} while (g != 1);
m[i] *= gi; m[j] *= gj;
b[i] %= m[i]; b[j] %= m[j];
}
res = (res * m[i]) % MOD;
}
return res;
}
// return x mod MOD
// It must be guranteed that all elements of m are coprime
// O(N^2)
std::int64_t garner(const std::vector<std::int64_t>& b, const std::vector<std::int64_t>& m, const std::int64_t MOD) {
std::vector<std::int64_t> coeffs(b.size()+1, 1);
std::vector<std::int64_t> constants(b.size()+1, 0);
for (int i = 0; i < b.size(); ++i) {
std::int64_t p, inv;
std::tie(inv, p) = extgcd(coeffs[i], m[i]);
std::int64_t t = (b[i] - constants[i]) * inv % m[i];
if (t < 0) t += m[i];
for (int j = i+1; j < b.size(); ++j) {
constants[j] = (constants[j] + coeffs[j] * t) % m[j];
coeffs[j] = (coeffs[j] * m[i]) % m[j];
}
constants.back() = (constants.back() + coeffs.back() * t) % MOD;
coeffs.back() = (coeffs.back() * m[i]) % MOD;
}
return constants.back();
}
int main(void) {
using namespace std;
int64_t N;
cin >> N;
vector<int64_t> X(N), Y(N);
for (int i = 0; i < N; i++) {
cin >> X[i] >> Y[i];
}
constexpr int64_t mod = 1e9+7;
int64_t l = pre_garner(X, Y, mod);
int64_t res = garner(X, Y, mod);
if (l == -1 || res == 0) {
cout << l%mod << endl;
} else {
cout << res << endl;
}
}
pazzle1230