結果
問題 |
No.34 砂漠の行商人
|
ユーザー |
|
提出日時 | 2019-08-20 22:07:06 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,159 ms / 5,000 ms |
コード長 | 4,004 bytes |
コンパイル時間 | 1,613 ms |
コンパイル使用メモリ | 175,072 KB |
実行使用メモリ | 61,028 KB |
最終ジャッジ日時 | 2024-10-06 16:10:49 |
合計ジャッジ時間 | 7,766 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 26 |
ソースコード
// includes #include <bits/stdc++.h> // macros #define pb emplace_back #define mk make_pair #define pq priority_queue #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define rep(i, n) FOR(i, 0, n) #define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--) #define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr) #define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr) #define vrep(v, i) for(int i = 0; i < (v).size(); i++) #define all(x) (x).begin(),(x).end() #define sz(x) ((int)(x).size()) #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()) #define FI first #define SE second #define bit(n) (1LL<<(n)) #define INT(n) int n; cin >> n; #define LL(n) ll n; cin >> n; #define DOUBLE(n) double n; cin >> n; using namespace std; template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;} template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;} template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;} template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} // types using ll = long long int; using P = pair<int, int>; using Pli = pair<ll, int>; using Pil = pair<int, ll>; using Pll = pair<ll, ll>; using Pdd = pair<double, double>; using cd = complex<double>; // constants const int inf = 1e9; const ll linf = 1LL << 50; const double EPS = 1e-10; const int mod = 1e9 + 7; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, -1, 0, 1}; // solve int l[110][110]; bool used[101][101][10001]; int main(int argc, char const* argv[]) { ios_base::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(20); INT(n); INT(v); INT(sx); INT(sy); INT(gx); INT(gy); sx--; sy--; gx--; gy--; rep(i, n){ rep(j, n)cin >> l[j][i]; } queue<pair<P, P>> q; q.push(mk(mk(sx, sy), mk(v, 0))); while(!q.empty()){ auto p = q.front(); q.pop(); int x = p.FI.FI; int y = p.FI.SE; int r = p.SE.FI; int d = p.SE.SE; if(used[x][y][r])continue; used[x][y][r] = true; if(x == gx && y == gy){ cout << d << endl; return 0; } rep(k, 4){ int nx = x + dx[k]; int ny = y + dy[k]; if(nx >= 0 && nx < n && ny >= 0 && ny < n && r > l[nx][ny]){ if(!used[nx][ny][r-l[nx][ny]])q.push(mk(mk(nx, ny), mk(r - l[nx][ny], d + 1))); } } } cout << -1 << endl; return 0; }