結果

問題 No.876 Range Compress Query
ユーザー finefine
提出日時 2019-09-06 21:41:03
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 134 ms / 2,000 ms
コード長 3,451 bytes
コンパイル時間 1,899 ms
コンパイル使用メモリ 174,168 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-24 17:16:48
合計ジャッジ時間 3,701 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 3 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 131 ms
5,376 KB
testcase_12 AC 112 ms
5,376 KB
testcase_13 AC 108 ms
5,376 KB
testcase_14 AC 134 ms
5,376 KB
testcase_15 AC 89 ms
5,376 KB
testcase_16 AC 123 ms
5,376 KB
testcase_17 AC 120 ms
5,376 KB
testcase_18 AC 130 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using P = pair<int, int>;

template <typename T>
struct SegmentTree {
    int n;
    vector<T> data;
    T INITIAL_VALUE;

    //使うときは、この2つを適宜変更する
    static T merge(T x, T y);
    void updateNode(int k, T x);

    SegmentTree(int size, T initial_value) {
        n = 1;
        INITIAL_VALUE = initial_value;
        while (n < size) n *= 2;
        data.resize(2 * n - 1, INITIAL_VALUE);
    }

    SegmentTree(const vector<T>& v, T initial_value) {
        int size = v.size();
        n = 1;
        INITIAL_VALUE = initial_value;
        while (n < size) n *= 2;
        data.resize(2 * n - 1, INITIAL_VALUE);

        for (int i = 0; i < size; i++) data[i + n - 1] = v[i];
        for (int i = n - 2; i >= 0; i--) data[i] = merge(data[i * 2 + 1], data[i * 2 + 2]);
    }

    T getLeaf(int k) {
        return data[k + n - 1];
    }

    void update(int k, T x) {
        k += n - 1; //葉の節点
        updateNode(k, x);
        while (k > 0) {
            k = (k - 1) / 2;
            data[k] = merge(data[k * 2 + 1], data[k * 2 + 2]);
        }
    }

    //区間[a, b)に対するクエリに答える
    //k:節点番号, [l, r):節点に対応する区間
    T query(int a, int b, int k, int l, int r) {
        //[a, b)と[l, r)が交差しない場合
        if (r <= a || b <= l) return INITIAL_VALUE;
        //[a, b)が[l, r)を含む場合、節点の値
        if (a <= l && r <= b) return data[k];
        else {
            //二つの子をマージ
            T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
            T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
            return merge(vl, vr);
        }
    }

    //外から呼ぶ用
    T query(int a, int b) {
        return query(a, b, 0, 0, n);
    }

    //非再帰版: バグってるかもしれないので定数倍高速化する時以外使わないで
    //区間[a, b)に対するクエリに答える
    T query_fast(int a, int b) {
        T vl = INITIAL_VALUE, vr = INITIAL_VALUE;
        for (int l = a + n, r = b + n; l != r; l >>= 1, r >>= 1) {
            if (l & 1) vl = merge(vl, data[l++ - 1]);
            if (r & 1) vr = merge(data[--r - 1], vr);
        }
        return merge(vl, vr);
    }
};

//使うときは以下2つを変更
//非可換の場合は順序に注意!!!
template <typename T>
T SegmentTree<T>::merge(T x, T y) {
    return x + y;
}

template <typename T>
void SegmentTree<T>::updateNode(int k, T x) {
    data[k] = x;
}

int main() {
    cin.tie(0);
    ios::sync_with_stdio(false);
    int n, q;
    cin >> n >> q;
    vector<ll> a(n);
    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }

    vector<int> v(n - 1, 0);
    for (int i = 0; i < n - 1; i++) {
        a[i] = a[i + 1] - a[i];
        v[i] = (a[i] != 0);
    }
    a[n - 1] = 0;

    SegmentTree<int> st(v, 0);
    for (int i = 0; i < q; i++) {
        int c, l, r;
        cin >> c >> l >> r;
        l--;
        if (c == 1) {
            ll x;
            cin >> x;
            if (l > 0) {
                a[l - 1] += x;
                st.update(l - 1, (a[l - 1] != 0));
            }
            r--;
            if (r < n - 1) {
                a[r] -= x;
                st.update(r, (a[r] != 0));
            }
        } else {
            r--;
            cout << st.query(l, r) + 1 << endl;
        }
    }
    return 0;
}
0