結果
問題 | No.876 Range Compress Query |
ユーザー | Arumakan1727 |
提出日時 | 2019-09-06 21:59:52 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,011 bytes |
コンパイル時間 | 2,293 ms |
コンパイル使用メモリ | 182,516 KB |
実行使用メモリ | 8,448 KB |
最終ジャッジ日時 | 2024-06-24 17:50:31 |
合計ジャッジ時間 | 4,752 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | WA | - |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | WA | - |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | WA | - |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 3 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 244 ms
8,320 KB |
testcase_12 | WA | - |
testcase_13 | AC | 191 ms
8,064 KB |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 226 ms
8,448 KB |
testcase_17 | AC | 229 ms
8,448 KB |
testcase_18 | AC | 246 ms
8,448 KB |
ソースコード
#include "bits/stdc++.h" // Begin Header {{{ #define let const auto #define all(x) (x).begin(), (x).end() #define rep(i, n) for (i64 i = 0, i##_limit = (n); i < i##_limit; ++i) #define reps(i, s, t) for (i64 i = (s), i##_limit = (t); i <= i##_limit; ++i) #define repr(i, s, t) for (i64 i = (s), i##_limit = (t); i >= i##_limit; --i) #define var(Type, ...) Type __VA_ARGS__; input(__VA_ARGS__) #define lowerBound(...) lowerBound_(__VA_ARGS__) #define upperBound(...) upperBound_(__VA_ARGS__) #define lowerBound_(begin, end, ...) (lower_bound((begin), (end), __VA_ARGS__) - (begin)) #define upperBound_(begin, end, ...) (upper_bound((begin), (end), __VA_ARGS__) - (begin)) #ifdef DBG #define trace(...) trace_g(#__VA_ARGS__, __VA_ARGS__) #else #define trace(...) #endif using namespace std; using i64 = int_fast64_t; using pii = pair<i64, i64>; template<class T, class U>inline bool chmax(T &a, const U &b){return b>a && (a=b, true);} template<class T, class U>inline bool chmin(T &a, const U &b){return b<a && (a=b, true);} inline i64 sigma(i64 n) { return (n * (n + 1) >> 1); } inline i64 updiv(i64 a, i64 b) { return (a + b - 1) / b; } inline i64 sqr(i64 n) { return n * n; } inline string to_string(char c) { return string(1, c); } inline bool isRangeIn(i64 a, i64 low, i64 high) { return (low <= a && a <= high); } constexpr int INF = 0x3f3f3f3f; constexpr i64 LINF = 0x3f3f3f3f3f3f3f3fLL; template<class T> vector<T> makeVec(size_t sz) { return vector<T>(sz); } template<class T, class... Args> auto makeVec(size_t sz, Args... args) { return vector<decltype(makeVec<T>(args...))>(sz, makeVec<T>(args...)); } template<class T> inline void input(T &x) { cin >> x; } template<class Head, class... Tail> inline void input(Head &head, Tail&... tail) { cin >> head; input(tail...); } inline void print() { cout << "\n"; } template<class Head, class... Tail> inline void print(Head &&head, Tail&&... tail) { cout << head; if (sizeof...(tail)) cout << ' '; print(forward<Tail>(tail)...); } template<class T> ostream& operator<< (ostream &out, const vector<T> &vec) { static constexpr const char *delim[] = { " ", "" }; for (const auto &e : vec) out << e << delim[&e == &vec.back()]; return out; } template<class T> ostream& operator<< (ostream &out, const vector<vector<T>> &mat) { static constexpr const char *tail[] = { "\n", "" }; for (const auto &row : mat) out << row << tail[&row == &mat.back()]; return out; } template <class T> void trace_g(const char *s, T&& x) { clog << '{'; while(*s != '\0') clog << *(s++); clog << ":" << setw(3) << x << '}' << endl; } template <class Head, class... Tail> void trace_g(const char *s, Head&& head, Tail&&... tail) { clog << '{'; while(*s != ',') clog << *(s++); clog << ":" << setw(3) << head << "}, "; for (++s; !isgraph(*s); ++s); trace_g(s, std::forward<Tail>(tail)...); } // }}} End Header template<typename Monoid, typename Laz> struct LazySegmentTree { // {{{ const function<Monoid(Monoid, Monoid)> mergeMonoid; const function<Monoid(Monoid, Laz, int)> applyLaz; const function<Laz(Laz, Laz)> mergeLaz; const Monoid e; // neutral element vector<Monoid> seg; vector<Laz> lazy; vector<bool> isUpdated; int size; LazySegmentTree(int nmemb, const Monoid &e, function<Monoid(Monoid, Monoid)> f, function<Monoid(Monoid, Laz, int)> g, function<Laz(Laz, Laz)> h): e(e), mergeMonoid(f), applyLaz(g), mergeLaz(h) { size = 1; while (size < nmemb) { size *= 2; } seg.assign(2 * size - 1, e); isUpdated.assign(2 * size - 1, true); lazy.resize(2 * size - 1); } inline void propagation(int k, int len) { if (!isUpdated[k]) { seg[k] = applyLaz(seg[k], lazy[k], len); if (len > 1) { if (isUpdated[2 * k + 1]) lazy[2 * k + 1] = lazy[k], isUpdated[2 * k + 1] = false; else lazy[2 * k + 1] = mergeLaz(lazy[2 * k + 1], lazy[k]); if (isUpdated[2 * k + 2]) lazy[2 * k + 2] = lazy[k], isUpdated[2 * k + 2] = false; else lazy[2 * k + 2] = mergeLaz(lazy[2 * k + 2], lazy[k]); } isUpdated[k] = true; } } Monoid update(int k, int nl, int nr, int ql, int qr, Laz dat) { propagation(k, nr - nl); if (nr <= ql || qr <= nl) return seg[k]; if (ql <= nl && nr <= qr) { lazy[k] = dat; isUpdated[k] = false; propagation(k, nr - nl); return seg[k]; } else { seg[k] = mergeMonoid(update(2 * k + 1, nl, (nl + nr) / 2, ql, qr, dat), update(2 * k + 2, (nl + nr) / 2, nr, ql, qr, dat)); return seg[k]; } } // [l, r) <= dat void update(int l, int r, Laz dat) { update(0, 0, size, l, r, dat); } Monoid query(int k, int nl, int nr, int ql, int qr) { propagation(k, nr - nl); if (nr <= ql || qr <= nl) return e; if (ql <= nl && nr <= qr) return seg[k]; else return mergeMonoid(query(2 * k + 1, nl, (nl + nr) / 2, ql, qr), query(2 * k + 2, (nl + nr) / 2, nr, ql, qr)); } // [l, r) Monoid query(int l, int r) { return query(0, 0, size, l, r); } Monoid operator [](const int &k) { return query(k, k + 1); } }; // }}} template <class T> struct FenwickTree { // {{{ vector<T> dat; const size_t SIZE_POW2; explicit FenwickTree(int size): dat(size+5, 0), SIZE_POW2(1 << (__lg(size+5)+1)) {} inline void add(int i, const T &v){ for (++i; i < dat.size(); i += i & -i) dat[i]+=v; } inline T sum(int i) const { T s = 0; for (++i; i > 0; i -= i & -i) s += dat[i]; return s;; } inline T sum(int s, int t) const { if (s > t) swap(s, t); return sum(t) - sum(s - 1); } inline T operator[](int i) const { return sum(i, i); } inline int lower_bound(T v) const { if (v <= 0) return 0; int i = 0; for (int w = SIZE_POW2; w > 0; w >>= 1) { if (i + w < dat.size() && dat[i + w] < v) { v -= dat[i + w]; i += w; } } return i; } }; // }}} signed main() { ios::sync_with_stdio(false); cin.tie(nullptr); var(int, N, Q); FenwickTree<int> diffCum(N); vector<i64> a(N); rep(i, N) { input(a[i]); } rep(i, N - 1) { if (a[i] != a[i+1]) { diffCum.add(i, 1); } } LazySegmentTree<i64, i64> seg(N, 0, [](i64 l, i64 r) { return l + r; }, [](i64 l, i64 r, int len) { return l + (r * len); }, [](i64 l, i64 r) { return l + r; } ); while (Q--) { var(int, com, l, r); --l, --r; if (com == 1) { var(i64, x); seg.update(l, r + 1, x); if (l > 0) { let n = a[l] + seg[l]; let m = a[l - 1] + seg[l -1 ]; if (n != m && diffCum[l - 1] == 0) { diffCum.add(l - 1, 1); } else if (n == m && diffCum[l - 1] == 1) { diffCum.add(l - 1, -1); } } if (r < N -1 ) { let n = a[r] + seg[r]; let m = a[r + 1] + seg[r + 1]; if (n != m && diffCum[r] == 0) { diffCum.add(r, 1); } else if (n == m && diffCum[r] == 1) { diffCum.add(r, -1); } } } else { print(diffCum.sum(l, r - 1) + 1); } } return 0; }