結果
| 問題 |
No.876 Range Compress Query
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-06 22:53:30 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 278 ms / 2,000 ms |
| コード長 | 10,582 bytes |
| コンパイル時間 | 13,618 ms |
| コンパイル使用メモリ | 378,292 KB |
| 実行使用メモリ | 9,728 KB |
| 最終ジャッジ日時 | 2024-06-24 20:28:32 |
| 合計ジャッジ時間 | 17,233 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 18 |
コンパイルメッセージ
warning: type `RMQ_RAQ` should have an upper camel case name
--> src/main.rs:306:8
|
306 | struct RMQ_RAQ;
| ^^^^^^^ help: convert the identifier to upper camel case: `RmqRaq`
|
= note: `#[warn(non_camel_case_types)]` on by default
warning: variable `N` should have a snake case name
--> src/main.rs:108:9
|
108 | N:usize,Q:usize, a:[usize;N],
| ^ help: convert the identifier to snake case: `n`
|
= note: `#[warn(non_snake_case)]` on by default
warning: variable `Q` should have a snake case name
--> src/main.rs:108:17
|
108 | N:usize,Q:usize, a:[usize;N],
| ^ help: convert the identifier to snake case: `q`
ソースコード
#[doc = " https://github.com/hatoo/competitive-rust-snippets"]
#[allow(unused_imports)]
use std::cmp::{max, min, Ordering};
#[allow(unused_imports)]
use std::collections::{BTreeMap, BTreeSet, BinaryHeap, HashMap, HashSet, VecDeque};
#[allow(unused_imports)]
use std::io::{stdin, stdout, BufWriter, Write};
#[allow(unused_imports)]
use std::iter::FromIterator;
#[allow(unused_macros)]
macro_rules ! debug { ( $ ( $ a : expr ) ,* ) => { eprintln ! ( concat ! ( $ ( stringify ! ( $ a ) , " = {:?}, " ) ,* ) , $ ( $ a ) ,* ) ; } }
#[macro_export]
macro_rules ! input { ( source = $ s : expr , $ ( $ r : tt ) * ) => { let mut parser = Parser :: from_str ( $ s ) ; input_inner ! { parser , $ ( $ r ) * } } ; ( parser = $ parser : ident , $ ( $ r : tt ) * ) => { input_inner ! { $ parser , $ ( $ r ) * } } ; ( new_stdin_parser = $ parser : ident , $ ( $ r : tt ) * ) => { let stdin = std :: io :: stdin ( ) ; let reader = std :: io :: BufReader :: new ( stdin . lock ( ) ) ; let mut $ parser = Parser :: new ( reader ) ; input_inner ! { $ parser , $ ( $ r ) * } } ; ( $ ( $ r : tt ) * ) => { input ! { new_stdin_parser = parser , $ ( $ r ) * } } ; }
#[macro_export]
macro_rules ! input_inner { ( $ parser : ident ) => { } ; ( $ parser : ident , ) => { } ; ( $ parser : ident , $ var : ident : $ t : tt $ ( $ r : tt ) * ) => { let $ var = read_value ! ( $ parser , $ t ) ; input_inner ! { $ parser $ ( $ r ) * } } ; }
#[macro_export]
macro_rules ! read_value { ( $ parser : ident , ( $ ( $ t : tt ) ,* ) ) => { ( $ ( read_value ! ( $ parser , $ t ) ) ,* ) } ; ( $ parser : ident , [ $ t : tt ; $ len : expr ] ) => { ( 0 ..$ len ) . map ( | _ | read_value ! ( $ parser , $ t ) ) . collect ::< Vec < _ >> ( ) } ; ( $ parser : ident , chars ) => { read_value ! ( $ parser , String ) . chars ( ) . collect ::< Vec < char >> ( ) } ; ( $ parser : ident , usize1 ) => { read_value ! ( $ parser , usize ) - 1 } ; ( $ parser : ident , $ t : ty ) => { $ parser . next ::<$ t > ( ) . expect ( "Parse error" ) } ; }
use std::io;
use std::io::BufRead;
use std::str;
pub struct Parser<R> {
reader: R,
buf: Vec<u8>,
pos: usize,
}
impl Parser<io::Empty> {
pub fn from_str(s: &str) -> Parser<io::Empty> {
Parser {
reader: io::empty(),
buf: s.as_bytes().to_vec(),
pos: 0,
}
}
}
impl<R: BufRead> Parser<R> {
pub fn new(reader: R) -> Parser<R> {
Parser {
reader: reader,
buf: vec![],
pos: 0,
}
}
pub fn update_buf(&mut self) {
self.buf.clear();
self.pos = 0;
loop {
let (len, complete) = {
let buf2 = self.reader.fill_buf().unwrap();
self.buf.extend_from_slice(buf2);
let len = buf2.len();
if len == 0 {
break;
}
(len, buf2[len - 1] <= 0x20)
};
self.reader.consume(len);
if complete {
break;
}
}
}
pub fn next<T: str::FromStr>(&mut self) -> Result<T, T::Err> {
loop {
let mut begin = self.pos;
while begin < self.buf.len() && (self.buf[begin] <= 0x20) {
begin += 1;
}
let mut end = begin;
while end < self.buf.len() && (self.buf[end] > 0x20) {
end += 1;
}
if begin != self.buf.len() {
self.pos = end;
return str::from_utf8(&self.buf[begin..end]).unwrap().parse::<T>();
} else {
self.update_buf();
}
}
}
}
#[allow(unused_macros)]
macro_rules ! debug { ( $ ( $ a : expr ) ,* ) => { eprintln ! ( concat ! ( $ ( stringify ! ( $ a ) , " = {:?}, " ) ,* ) , $ ( $ a ) ,* ) ; } }
#[doc = " https://github.com/hatoo/competitive-rust-snippets"]
const BIG_STACK_SIZE: bool = true;
#[allow(dead_code)]
fn main() {
use std::thread;
if BIG_STACK_SIZE {
thread::Builder::new()
.stack_size(32 * 1024 * 1024)
.name("solve".into())
.spawn(solve)
.unwrap()
.join()
.unwrap();
} else {
solve();
}
}
#[derive(Debug)]
enum T {
U(usize,usize,usize),
Q(usize,usize),
}
fn solve() {
input!{
new_stdin_parser = parser,
N:usize,Q:usize, a:[usize;N],
}
let mut q=vec![];
for _ in 0..Q {
input!{
parser=parser,
t:usize,
}
if t==1 {
input!{
parser=parser,
l:usize,r:usize,x:usize,
}
q.push(T::U(l,r,x));
}
else if t==2 {
input!{
parser=parser,
l:usize,r:usize,
}
q.push(T::Q(l,r));
}
}
let mut group = BIT::new(N);
let mut value: SEG<RMQ_RAQ> = SEG::new(0,N+1);
let mut acc=0;
for i in 0..N {
let ai=a[i];
if ai!=acc {
group.add(i+1, 1);
acc=ai;
}
value.update(i+1, i+2, ai);
}
for qi in q {
match qi {
T::U(l,r,x) => {
let mut left_eq = true;
if l>=2 {
let al=value.query(l, l+1);
let all=value.query(l-1, l);
// dbg!(al,all);
if al!=all {
left_eq=false;
}
}
let mut right_eq = true;
if r+1<=N {
let ar=value.query(r, r+1);
let arr=value.query(r+1, r+2);
if ar!=arr {
right_eq=false;
}
}
value.update(l, r+1, x);
// dbg!(left_eq,right_eq);
if l>=2 {
let al=value.query(l, l+1);
let all=value.query(l-1, l);
if left_eq && al!=all {
group.add(l,1);
}
else if !left_eq && al==all {
group.add(l,-1);
}
}
if r+1<=N {
let ar=value.query(r, r+1);
let arr=value.query(r+1, r+2);
if right_eq && ar!=arr {
group.add(r+1,1);
}
else if !right_eq && ar==arr {
group.add(r+1,-1);
}
}
},
T::Q(l,r) => {
let vl=group.sum(l);
let vr=group.sum(r);
// dbg!((vl,vr));
println!("{}",vr-vl+1);
}
}
}
}
#[allow(dead_code)]
#[doc = " Binary Indexed Tree of usize"]
pub struct BIT {
buf: Vec<i64>,
}
#[allow(dead_code)]
impl BIT {
pub fn new(n: usize) -> BIT {
BIT {
buf: vec![0; n + 1],
}
}
pub fn sum(&self, i: usize) -> i64 {
let mut i = i;
let mut s = 0;
while i > 0 {
s += self.buf[i];
i &= i - 1;
}
s
}
pub fn add(&mut self, i: usize, x: i64) {
let mut i = i as i64;
while i < self.buf.len() as i64 {
self.buf[i as usize] += x;
i += i & -i;
}
}
}
#[doc = " https://ei1333.github.io/luzhiled/snippets/structure/segment-tree.html"]
trait SEGImpl {
type Monoid: Copy;
type OperatorMonoid: Copy + PartialEq;
fn m0() -> Self::Monoid;
fn om0() -> Self::OperatorMonoid;
fn f(x: Self::Monoid, y: Self::Monoid) -> Self::Monoid;
fn g(x: Self::Monoid, y: Self::OperatorMonoid, len: usize) -> Self::Monoid;
fn h(x: Self::OperatorMonoid, y: Self::OperatorMonoid) -> Self::OperatorMonoid;
}
struct SEG<T: SEGImpl> {
n: usize,
data: Vec<T::Monoid>,
lazy: Vec<T::OperatorMonoid>,
}
impl<T: SEGImpl> SEG<T> {
fn new(init: T::Monoid, n: usize) -> SEG<T> {
let mut m = 1;
while m < n {
m *= 2;
}
SEG {
n: m,
data: vec![init; m * 2],
lazy: vec![T::om0(); m * 2],
}
}
fn propagate(&mut self, k: usize, len: usize) {
if self.lazy[k] != T::om0() {
if k < self.n {
self.lazy[2 * k + 0] = T::h(self.lazy[2 * k + 0], self.lazy[k]);
self.lazy[2 * k + 1] = T::h(self.lazy[2 * k + 1], self.lazy[k]);
}
self.data[k] = T::g(self.data[k], self.lazy[k], len);
self.lazy[k] = T::om0();
}
}
fn do_update(
&mut self,
a: usize,
b: usize,
x: T::OperatorMonoid,
k: usize,
l: usize,
r: usize,
) -> T::Monoid {
self.propagate(k, r - l);
if r <= a || b <= l {
self.data[k]
} else if a <= l && r <= b {
self.lazy[k] = T::h(self.lazy[k], x);
self.propagate(k, r - l);
self.data[k]
} else {
self.data[k] = T::f(
self.do_update(a, b, x, 2 * k + 0, l, (l + r) >> 1),
self.do_update(a, b, x, 2 * k + 1, (l + r) >> 1, r),
);
self.data[k]
}
}
fn update(&mut self, a: usize, b: usize, x: T::OperatorMonoid) -> T::Monoid {
let n = self.n;
self.do_update(a, b, x, 1, 0, n)
}
fn do_query(&mut self, a: usize, b: usize, k: usize, l: usize, r: usize) -> T::Monoid {
self.propagate(k, r - l);
if r <= a || b <= l {
T::m0()
} else if a <= l && r <= b {
self.data[k]
} else {
T::f(
self.do_query(a, b, 2 * k + 0, l, (l + r) >> 1),
self.do_query(a, b, 2 * k + 1, (l + r) >> 1, r),
)
}
}
fn query(&mut self, a: usize, b: usize) -> T::Monoid {
let n = self.n;
self.do_query(a, b, 1, 0, n)
}
}
struct RMQ_RAQ;
impl SEGImpl for RMQ_RAQ {
type Monoid = usize;
type OperatorMonoid = usize;
fn m0() -> Self::Monoid {
(1<<60)-1
}
fn om0() -> Self::OperatorMonoid {
0
}
fn f(x: Self::Monoid, y: Self::Monoid) -> Self::Monoid {
std::cmp::min(x, y)
}
fn g(x: Self::Monoid, y: Self::OperatorMonoid, len: usize) -> Self::Monoid {
x + len * y
}
fn h(x: Self::OperatorMonoid, y: Self::OperatorMonoid) -> Self::OperatorMonoid {
x + y
}
}