結果

問題 No.876 Range Compress Query
ユーザー jelljell
提出日時 2019-09-07 12:16:40
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 279 ms / 2,000 ms
コード長 19,915 bytes
コンパイル時間 2,341 ms
コンパイル使用メモリ 151,696 KB
実行使用メモリ 8,192 KB
最終ジャッジ日時 2024-06-26 07:58:42
合計ジャッジ時間 5,316 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 3 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 3 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 3 ms
6,944 KB
testcase_07 AC 3 ms
6,944 KB
testcase_08 AC 3 ms
6,940 KB
testcase_09 AC 3 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 271 ms
7,936 KB
testcase_12 AC 223 ms
7,936 KB
testcase_13 AC 223 ms
7,936 KB
testcase_14 AC 270 ms
8,064 KB
testcase_15 AC 189 ms
8,192 KB
testcase_16 AC 262 ms
8,064 KB
testcase_17 AC 263 ms
8,192 KB
testcase_18 AC 279 ms
8,064 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef stderr_path
#define LOCAL
#define _GLIBCXX_DEBUG
#endif
#pragma GCC optimize("Ofast")
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>

#define debug_stream std::cerr
#define iostream_untie true
#define __precision__ 10

#define rep(i, n) for(int i = 0; i < int(n); ++i)
#define all(v) begin(v), end(v)
#define rall(v) rbegin(v), rend(v)
#define __odd(n) ((n) & 1)
#define __even(n) (__odd(n) ^ 1)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(int32_t(n))
#define __clz64(n) __builtin_clzll(int64_t(n))
#define __ctz32(n) __builtin_ctz(int32_t(n))
#define __ctz64(n) __builtin_ctzll(int64_t(n))

using i64 = int_fast64_t;
using pii = std::pair<int, int>;
using pll = std::pair<int_fast64_t, int_fast64_t>;
template <class T>
using heap = std::priority_queue<T>;
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
constexpr T inf = std::numeric_limits<T>::max() / T(2) - T(1123456);

namespace execution
{
    std::chrono::system_clock::time_point start_time, end_time;
    void print_elapsed_time()
    {
        end_time = std::chrono::system_clock::now();
        std::cerr << "\n----- Exec time : ";
        std::cerr << std::chrono::duration_cast<std::chrono::milliseconds>(
                         end_time - start_time)
                         .count();
        std::cerr << " ms -----\n\n";
    }
    struct setupper
    {
        setupper()
        {
            if(iostream_untie)
            {
                std::ios::sync_with_stdio(false);
                std::cin.tie(nullptr);
            }
            std::cout << std::fixed << std::setprecision(__precision__);
#ifdef stderr_path
            if(freopen(stderr_path, "a", stderr))
            {
                std::cerr << std::fixed << std::setprecision(__precision__);
            }
            else
                fclose(stderr);
#endif
#ifdef stdout_path
            if(not freopen(stdout_path, "w", stdout))
            {
                freopen("CON", "w", stdout);
                std::cerr << "Failed to open the stdout file\n\n";
            }
            std::cout << "";
#endif
#ifdef stdin_path
            if(not freopen(stdin_path, "r", stdin))
            {
                freopen("CON", "r", stdin);
                std::cerr << "Failed to open the stdin file\n\n";
            }
#endif
#ifdef LOCAL
            atexit(print_elapsed_time);
            start_time = std::chrono::system_clock::now();
#endif
        }
    } __setupper;
} // namespace execution

struct myclock_t
{
    std::chrono::system_clock::time_point built_pt, last_pt;
    int built_ln, last_ln;
    std::string built_func, last_func;
    bool is_built;
    myclock_t() : is_built(false)
    {}
    void build(int crt_ln, const std::string &crt_func)
    {
        is_built = true;
        last_pt = built_pt = std::chrono::system_clock::now();
        last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
    }
    void set(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            last_pt = std::chrono::system_clock::now();
            last_ln = crt_ln, last_func = crt_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
                         << "myclock_t::set failed (yet to be built!)\n";
        }
    }
    void get(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            std::chrono::system_clock::time_point crt_pt(
                std::chrono::system_clock::now());
            int64_t diff =
                std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt -
                                                                      last_pt)
                    .count();
            debug_stream << diff << " ms elapsed from"
                         << " [ " << last_ln << " : " << last_func << " ]";
            if(last_ln == built_ln) debug_stream << " (when built)";
            debug_stream << " to"
                         << " [ " << crt_ln << " : " << crt_func << " ]"
                         << "\n";
            last_pt = built_pt, last_ln = built_ln, last_func = built_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
                         << "myclock_t::get failed (yet to be built!)\n";
        }
    }
};
#ifdef LOCAL
myclock_t myclock;
#define build_clock() myclock.build(__LINE__, __func__)
#define set_clock() myclock.set(__LINE__, __func__)
#define get_clock() myclock.get(__LINE__, __func__)
#else
#define build_clock() 42
#define set_clock() 42
#define get_clock() 42
#endif

namespace std
{
    template <class RAitr>
    void rsort(RAitr __first, RAitr __last)
    {
        sort(__first, __last, greater<>());
    }
    template <class T>
    size_t hash_combine(size_t seed, T const &key)
    {
        return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2));
    }
    template <class T, class U>
    struct hash<pair<T, U>>
    {
        size_t operator()(pair<T, U> const &pr) const
        {
            return hash_combine(hash_combine(0, pr.first), pr.second);
        }
    };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1>
    struct tuple_hash_calc
    {
        static size_t apply(size_t seed, tuple_t const &t)
        {
            return hash_combine(
                tuple_hash_calc<tuple_t, index - 1>::apply(seed, t),
                get<index>(t));
        }
    };
    template <class tuple_t>
    struct tuple_hash_calc<tuple_t, 0>
    {
        static size_t apply(size_t seed, tuple_t const &t)
        {
            return hash_combine(seed, get<0>(t));
        }
    };
    template <class... T>
    struct hash<tuple<T...>>
    {
        size_t operator()(tuple<T...> const &t) const
        {
            return tuple_hash_calc<tuple<T...>>::apply(0, t);
        }
    };
    template <class T, class U>
    istream &operator>>(std::istream &s, pair<T, U> &p)
    {
        return s >> p.first >> p.second;
    }
    template <class T, class U>
    ostream &operator<<(std::ostream &s, const pair<T, U> p)
    {
        return s << p.first << " " << p.second;
    }
    template <class T>
    istream &operator>>(istream &s, vector<T> &v)
    {
        for(T &e : v)
        {
            s >> e;
        }
        return s;
    }
    template <class T>
    ostream &operator<<(ostream &s, const vector<T> &v)
    {
        for(size_t i = 0; i < v.size(); ++i)
        {
            s << (i ? " " : "") << v[i];
        }
        return s;
    }
    template <class tuple_t, size_t index>
    struct tupleos
    {
        static ostream &apply(ostream &s, const tuple_t &t)
        {
            tupleos<tuple_t, index - 1>::apply(s, t);
            return s << " " << get<index>(t);
        }
    };
    template <class tuple_t>
    struct tupleos<tuple_t, 0>
    {
        static ostream &apply(ostream &s, const tuple_t &t)
        {
            return s << get<0>(t);
        }
    };
    template <class... T>
    ostream &operator<<(ostream &s, const tuple<T...> &t)
    {
        return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(
            s, t);
    }
    template <>
    ostream &operator<<(ostream &s, const tuple<> &t)
    {
        return s;
    }
} // namespace std

#ifdef LOCAL
#define dump(...)                                                              \
    debug_stream << " [ " << __LINE__ << " : " << __FUNCTION__ << " ] "        \
                 << #__VA_ARGS__ << " : ",                                     \
        dump_func(__VA_ARGS__)
#else
#define dump(...) 42
#endif
template <class T>
void dump_func(const T &x)
{
    debug_stream << x << '\n';
}
template <class T, class... Rest>
void dump_func(const T &x, Rest... rest)
{
    debug_stream << x << ", ";
    dump_func(rest...);
}
template <class T>
void write(const T &x)
{
    std::cout << x << '\n';
}
template <class T, class... Rest>
void write(const T &x, Rest... rest)
{
    std::cout << x << ' ';
    write(rest...);
}
void writeln()
{}
template <class T, class... Rest>
void writeln(const T &x, Rest... rest)
{
    std::cout << x << '\n';
    writeln(rest...);
}
#define esc(...) writeln(__VA_ARGS__), exit(0)
template <class P>
void read_range(P __first, P __second)
{
    for(P i = __first; i != __second; ++i)
        std::cin >> *i;
}

template <class T>
bool chmin(T &x, const T &y)
{
    return x > y ? x = y, true : false;
}
template <class T>
bool chmax(T &x, const T &y)
{
    return x < y ? x = y, true : false;
}
template <class T>
constexpr T minf(const T &x, const T &y)
{
    return std::min(x, y);
}
template <class T>
constexpr T maxf(const T &x, const T &y)
{
    return std::max(x, y);
}
template <class int_t, class F>
int_t bin(int_t ok, int_t ng, const F &f)
{
    while(std::abs(ok - ng) > 1)
    {
        int_t mid = (ok + ng) / 2;
        (f(mid) ? ok : ng) = mid;
    }
    return ok;
}
template <class A, size_t N, class T>
void init(A (&array)[N], const T &val)
{
    std::fill((T *)array, (T *)(array + N), val);
}
template <class A, size_t N>
void init(A (&array)[N])
{
    memset(array, 0, sizeof(array));
}
void for_subset(int_fast64_t s, const std::function<void(int_fast64_t)> &fn)
{
    int_fast64_t t = s;
    do
    {
        fn(t);
    } while((--t &= s) != s);
}

namespace math
{
    template <class int_t>
    constexpr int_t gcd(int_t x, int_t y)
    {
        x = x > 0 ? x : -x, y = y > 0 ? y : -y;
        while(y)
            y ^= x ^= y ^= x %= y;
        return x;
    }
    template <class int_t>
    constexpr int_t lcm(int_t x, int_t y)
    {
        return x ? x / gcd(x, y) * y : 0;
    }
    template <class int_t>
    constexpr std::tuple<int_t, int_t, int_t> ext_gcd(int_t a, int_t b)
    {
        int_t sgn_a = a >= 0 ? 1 : (a = -a, 0),
              sgn_b = b >= 0 ? 1 : (b = -b, 0);
        int_t p = 1, q = 0, r = 0, s = 1;
        while(b)
        {
            int_t t = a / b;
            r ^= p ^= r ^= p -= t * r;
            s ^= q ^= s ^= q -= t * s;
            b ^= a ^= b ^= a %= b;
        }
        return std::tuple<int_t, int_t, int_t>(a, sgn_a ? p : -p,
                                               sgn_b ? q : -q);
    }
    template <class int_t>
    constexpr std::pair<int_t, int_t> mod_comp(int_t k, int_t m, int_t l,
                                               int_t n)
    {
        assert(m > 0 and n > 0);
        int_t g, x, y;
        std::tie(g, x, y) = ext_gcd(m, n);
        k += ((k %= m) < 0) * m, l += ((l %= n) < 0) * n;
        int_t s = k / g, t = l / g, r = k % g;
        if(r != l % g) return std::pair<int_t, int_t>(-1, -1);
        int_t lcm = m / g * n;
        return std::pair<int_t, int_t>(
            (m * x % lcm * t % lcm + n * y % lcm * s % lcm + r + lcm * 2) % lcm,
            lcm);
    }
} // namespace math

/* The main code follows. */

using namespace std;
using namespace math;

signed main()
{
    void solve();
    void input();
    void init();

    int t = 1;

    // std::cin >> t;

    while(t--)
    {
        init();
        input();
        solve();
    }
}

template <class Abel>
// Abel must be an abelian group.
struct Fenwick_tree
{
    const std::size_t n;
    const Abel identity;
    std::vector<Abel> data;

    Fenwick_tree(std::size_t _n, Abel _identity = Abel())
        : n(_n), identity(_identity)
    {
        data.resize(n + 1, identity);
    }

    void inc(std::size_t i, Abel x)
    {
        for(++i; i <= n; i += i & -i)
        {
            data[i] += x;
        }
    }

    void subs(std::size_t i, Abel x)
    {
        inc(i, x - (*this)[i]);
    }

    // sum of range [0, i).
    Abel sum(std::size_t i) const
    {
        Abel ret = identity;
        for(; i; i &= (i - 1))
        {
            ret += data[i];
        }
        return ret;
    }

    // sum of range [l, r).
    Abel sum(std::size_t l, std::size_t r) const
    {
        return sum(r) - sum(l);
    }

    Abel operator[](std::size_t i) const
    {
        return sum(i + 1) - sum(i);
    }

    // maximum i where range [0, i) meets the condition.
    std::size_t bound(const std::function<bool(Abel)> &f)
    {
        Abel now = identity;
        std::size_t l = 0, r = n + 1;
        std::size_t bit = 1;
        while(bit <= n)
            bit <<= 1;
        while(r - l > 1)
        {
            while(bit >= r - l)
                bit >>= 1;
            if(f(now + data[l + bit]))
            {
                now += data[l + bit];
                l += bit;
            }
            else
            {
                r = l + bit;
            }
        }
        return l;
    }
};
template <class Monoid, class act_t>
class Lazy_segment_tree
{
    std::vector<Monoid> data;
    std::vector<act_t> lazy;
    std::vector<bool> lazyflag;

  public:
    const std::size_t n, N;

    using opr_t = std::function<Monoid(const Monoid &, const Monoid &)>;
    using lazy_opr_t = std::function<void(act_t &, const act_t &, std::size_t)>;
    using update_opr_t =
        std::function<void(Monoid &, const act_t &, std::size_t)>;
    const opr_t opr;
    const lazy_opr_t lazy_opr;
    const update_opr_t update_opr;
    const Monoid identity, lazy_identity;

    Lazy_segment_tree(std::size_t _n, const Monoid &_identity,
                const Monoid &_lazy_identity, const opr_t &_opr,
                const lazy_opr_t &_lazy_opr, const update_opr_t &_update_opr)
        : n(_n), N(_n > 1 ? 1 << (32 - __builtin_clz(_n - 1)) : 1), opr(_opr),
          lazy_opr(_lazy_opr), update_opr(_update_opr), identity(_identity),
          lazy_identity(_lazy_identity)
    {
        data.assign(N << 1, identity);
        lazy.assign(N << 1, lazy_identity);
        lazyflag.assign(N << 1, false);
    }

    Monoid operator[](std::size_t i)
    {
        return query(i, i + 1);
    }

    template <class P>
    void copy(P s, P t)
    {
        for(std::size_t i = N; s != t; ++s, ++i)
            data[i] = *s;
        for(std::size_t i = N - 1; i; --i)
            data[i] = opr(data[left(i)], data[right(i)]);
    }

    template <class A>
    void copy(A &v)
    {
        copy(begin(v), end(v));
    }

    void init(const Monoid &x)
    {
        for(std::size_t i = 0; i < N; ++i)
            data[i + N] = x;
        for(std::size_t i = N - 1; i; --i)
            data[i] = opr(data[left(i)], data[right(i)]);
    }

    void update(std::size_t a, const act_t &actor)
    {
        update(a, a + 1, actor);
    }

    void update(std::size_t a, std::size_t b, const act_t &actor)
    {
        update(a, b, actor, 1, 0, N);
    }

    Monoid query(std::size_t a, std::size_t b)
    {
        return query(a, b, 1, 0, N);
    }

    std::size_t right_bound(std::size_t idx,
                            const std::function<bool(const Monoid &)> &f)
    {
        assert(idx < n);
        std::size_t ret = idx;
        Monoid now = identity;
        right_bound(idx, f, 1, 0, N, now, ret);
        return std::min(ret, n);
    }

    std::size_t left_bound(std::size_t idx,
                           const std::function<bool(const Monoid &)> &f)
    {
        assert(idx <= n);
        std::size_t ret = idx;
        Monoid now = identity;
        left_bound(idx, f, 1, 0, N, now, ret);
        return ret;
    }

  private:
    constexpr std::size_t left(const std::size_t k)
    {
        return k * 2;
    }

    constexpr std::size_t right(const std::size_t k)
    {
        return left(k) ^ 1;
    }

    constexpr std::size_t parent(const std::size_t k)
    {
        return k >> 1;
    }

    constexpr std::size_t sibling(const std::size_t k)
    {
        return k ^ 1;
    }

    void eval(std::size_t k, std::size_t l, std::size_t r)
    {
        if(!lazyflag[k]) return;
        update_opr(data[k], lazy[k], r - l);
        if(r - l > 1)
        {
            lazy_opr(lazy[left(k)], lazy[k], (r - l) / 2);
            lazy_opr(lazy[right(k)], lazy[k], (r - l) / 2);
            lazyflag[left(k)] = lazyflag[right(k)] = true;
        }
        lazy[k] = lazy_identity;
        lazyflag[k] = false;
    }

    void update(std::size_t a, std::size_t b, const act_t &actor, std::size_t k,
                std::size_t l, std::size_t r)
    {
        eval(k, l, r);
        if(b <= l || r <= a) return;
        if(a <= l && r <= b)
        {
            lazy_opr(lazy[k], actor, r - l);
            lazyflag[k] = true;
            eval(k, l, r);
        }
        else
        {
            update(a, b, actor, left(k), l, (l + r) / 2);
            update(a, b, actor, right(k), (l + r) / 2, r);
            data[k] = opr(data[left(k)], data[right(k)]);
        }
    }

    Monoid query(std::size_t a, std::size_t b, std::size_t k, std::size_t l,
                 std::size_t r)
    {
        if(b <= l || r <= a) return identity;
        eval(k, l, r);
        if(a <= l && r <= b) return data[k];
        return opr(query(a, b, left(k), l, (l + r) / 2),
                   query(a, b, right(k), (l + r) / 2, r));
    }

    void right_bound(std::size_t idx,
                     const std::function<bool(const Monoid &)> &f,
                     std::size_t k, std::size_t l, std::size_t r, Monoid &now,
                     std::size_t &pos)
    {
        if(idx >= r || l > pos) return;
        eval(k, l, r);
        const std::size_t mid = (l + r) / 2;
        if(l >= idx)
        {
            Monoid nxt = opr(now, data[k]);
            if(f(nxt))
            {
                pos = r;
                now = nxt;
                return;
            }
        }
        if(r - l > 1)
        {
            right_bound(idx, f, left(k), l, mid, now, pos);
            right_bound(idx, f, right(k), mid, r, now, pos);
        }
    }

    void left_bound(std::size_t idx,
                    const std::function<bool(const Monoid &)> &f, std::size_t k,
                    std::size_t l, std::size_t r, Monoid &now, std::size_t &pos)
    {
        if(idx <= l || r < pos) return;
        eval(k, l, r);
        const std::size_t mid = (l + r) / 2;
        if(r <= idx)
        {
            Monoid nxt = opr(data[k], now);
            if(f(nxt))
            {
                pos = l;
                now = nxt;
                return;
            }
        }
        if(r - l > 1)
        {
            left_bound(idx, f, right(k), mid, r, now, pos);
            left_bound(idx, f, left(k), l, mid, now, pos);
        }
    }
};

int n,qry;
int a[1<<17];
vector<pii> arr;
vector<tuple<int,int,int,int>> que;

void init()
{}

void input()
{
    std::cin >> n >> qry;
    read_range(a,a+n);
    
}

void solve()
{
    Lazy_segment_tree<i64,i64> lsg(n,0,0,plus<i64>(),[](i64 &x,i64 y,size_t w){x+=y;},[](i64 &x,i64 y,size_t w){x+=y*w;});
    Fenwick_tree<int> fenw(n-1);
    for(int i=0; i<n; i++)
    {
        lsg.update(i,a[i]);
    }
    for(int i=1; i<n; i++)
    {
        fenw.inc(i-1,a[i]!=a[i-1]);
    }
    while(qry--)
    {
        int typ,l,r; std::cin >> typ >> l >> r;
        l--;
        if(typ==1)
        {
            int x; std::cin >> x;
            if(l>0 and lsg[l-1]!=lsg[l])
            {
                fenw.inc(l-1,-1);
            }
            if(lsg[r]!=lsg[r-1])
            {
                fenw.inc(r-1,-1);
            }
            lsg.update(l,r,x);
            if(l>0 and lsg[l-1]!=lsg[l])
            {
                fenw.inc(l-1,1);
            }
            if(lsg[r-1]!=lsg[r])
            {
                fenw.inc(r-1,1);
            }
        }
        else
        {
            std::cout << fenw.sum(l,r-1)+1 << "\n";
        }
    }
}
0