結果
問題 | No.58 イカサマなサイコロ |
ユーザー | not_522 |
提出日時 | 2015-07-19 18:34:50 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 4 ms / 5,000 ms |
コード長 | 5,366 bytes |
コンパイル時間 | 1,448 ms |
コンパイル使用メモリ | 174,756 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-08 10:22:17 |
合計ジャッジ時間 | 2,133 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 4 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 4 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 1 ms
6,940 KB |
testcase_09 | AC | 4 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; namespace arithmetic { template<typename T> class Addition { public: template<typename V> T operator+(const V& v) const { T res(static_cast<const T&>(*this)); return res += static_cast<T>(v); } }; template<typename T> class Subtraction { public: template<typename V> T operator-(const V& v) const { T res(static_cast<const T&>(*this)); return res -= static_cast<T>(v); } }; template<typename T> class Multiplication { public: template<typename V> T operator*(const V& v) const { T res(static_cast<const T&>(*this)); return res *= static_cast<T>(v); } }; template<typename T> class Division { public: template<typename V> T operator/(const V& v) const { T res(static_cast<const T&>(*this)); return res /= static_cast<T>(v); } }; template<typename T> class Modulus { public: template<typename V> T operator%(const V& v) const { T res(static_cast<const T&>(*this)); return res %= static_cast<T>(v); } }; } template<typename T> class IndivisibleArithmetic : public arithmetic::Addition<T>, public arithmetic::Subtraction<T>, public arithmetic::Multiplication<T> {}; template<typename T> class Arithmetic : public IndivisibleArithmetic<T>, public arithmetic::Division<T> {}; template<typename T> class Vector : public arithmetic::Addition<Vector<T>>, public arithmetic::Subtraction<Vector<T>> { protected: vector<T> val; public: Vector(int n) : val(n, 0) {} T& operator[](int n) { return val[n]; } Vector operator+=(const Vector& v) { for (int i = 0; i < size(); ++i) val[i] += v[i]; return *this; } Vector operator-=(const Vector& v) { for (int i = 0; i < size(); ++i) val[i] -= v[i]; return *this; } T operator*(const Vector& v) const { return inner_product(val.begin(), val.end(), const_cast<Vector&>(v).begin(), T(0)); } int size() const { return val.size(); } typename vector<T>::const_iterator begin() const { return val.begin(); } typename vector<T>::const_iterator end() const { return val.end(); } }; template<typename T> class Matrix : public arithmetic::Addition<Matrix<T>>, public arithmetic::Subtraction<Matrix<T>> { protected: vector<Vector<T>> val; public: Matrix(int n, int m) : val(n, Vector<T>(m)) {} Vector<T>& operator[](int n) { return val[n]; } Matrix operator+=(const Matrix& m) { for (int i = 0; i < (int)val.size(); ++i) val[i] += m[i]; return *this; } Matrix operator-=(const Matrix& m) { for (int i = 0; i < (int)val.size(); ++i) val[i] -= m[i]; return *this; } Matrix operator*=(const Matrix& _m) { Matrix &m = const_cast<Matrix&>(_m); Matrix res(size(), m[0].size()); for (int i = 0; i < size(); ++i) { for (int j = 0; j < m.size(); ++j) { for (int k = 0; k < m[0].size(); ++k) { res[i][k] += val[i][j] * m[j][k]; } } } return *this = res; } Matrix operator*(const Matrix& m) const { Matrix res = *this; return res *= m; } Vector<T> operator*(const Vector<T>& v) { Vector<T> res(size()); for (int i = 0; i < size(); ++i) res[i] += val[i] * v; return res; } int size() const { return val.size(); } }; template<typename T> class SquareMatrix : public Matrix<T>, public arithmetic::Division<SquareMatrix<T>> { public: SquareMatrix(int n) : Matrix<T>(n, n) {} SquareMatrix(const Matrix<T>& m) : Matrix<T>(m) {} SquareMatrix operator/=(const SquareMatrix& m) { return *this *= m.inverse(); } SquareMatrix identity() const { SquareMatrix res(this->size()); for (int i = 0; i < this->size(); ++i) res[i][i] = 1; return res; } SquareMatrix inverse() const { int n = this->size(); SquareMatrix mat = *this; SquareMatrix inv = identity(); for (int i = 0; i < n; ++i) { int p = i; for (int j = i + 1; j < n; ++j) { if (abs(mat[j][i]) > abs(mat[p][i])) p = j; } swap(mat[i], mat[p]); swap(inv[i], inv[p]); for (int j = i + 1; j < n; ++j) mat[i][j] /= mat[i][i]; for (int j = 0; j < n; ++j) inv[i][j] /= mat[i][i]; mat[i][i] = 1; for (int j = 0; j < n; ++j) { if (i == j) continue; T a = mat[j][i]; for (int k = 0; k < n; ++k) { mat[j][k] -= a * mat[i][k]; inv[j][k] -= a * inv[i][k]; } } } return inv; } }; template<typename T> T pow(T& m, long long n) { if (n == 0) { return m.identity(); } else if (n < 0) { return m.identity() / pow(m, -n); } T mm = pow(m, n / 2); mm *= mm; if (n % 2) mm *= m; return mm; } int main() { int n, k; cin >> n >> k; const int mx = 6 * n; SquareMatrix<double> m1(mx + 1), m2(mx + 1); for (int i = 0; i < mx; ++i) { for (int j = 1; j <= 6; ++j) { if (i + j <= mx) m1[i + j][i] = 1.0 / 6; } for (int j = 4; j <= 6; ++j) { if (i + j <= mx) m2[i + j][i] = 2.0 / 6; } } Vector<double> v(mx + 1); v[0] = 1; auto taro = (Matrix<double>)pow(m1, n - k) * (Matrix<double>)pow(m2, k) * v; auto jiro = pow(m1, n) * v; double res = 0; for (int i = 0; i <= mx; ++i) { for (int j = 0; j < i; ++j) res += taro[i] * jiro[j]; } cout << fixed << setprecision(15) << res << endl; }