結果
問題 | No.891 隣接3項間の漸化式 |
ユーザー |
![]() |
提出日時 | 2019-09-20 21:33:09 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 3,730 bytes |
コンパイル時間 | 1,702 ms |
コンパイル使用メモリ | 174,660 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-14 16:37:23 |
合計ジャッジ時間 | 2,968 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 39 |
ソースコード
#include <bits/stdc++.h>using namespace std;typedef long long ll;typedef pair<ll, ll> l_l;typedef pair<int, int> i_i;template<class T>inline bool chmax(T &a, T b) {if(a < b) {a = b;return true;}return false;}template<class T>inline bool chmin(T &a, T b) {if(a > b) {a = b;return true;}return false;}#define EPS (1e-7)#define INF (1e9)#define PI (acos(-1))const ll mod = 1000000007;template< class T >struct Matrix {vector< vector< T > > A;Matrix() {}Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}Matrix(size_t n) : A(n, vector< T >(n, 0)) {};size_t height() const {return (A.size());}size_t width() const {return (A[0].size());}inline const vector< T > &operator[](int k) const {return (A.at(k));}inline vector< T > &operator[](int k) {return (A.at(k));}static Matrix I(size_t n) {Matrix mat(n);for(int i = 0; i < n; i++) mat[i][i] = 1;return (mat);}Matrix &operator+=(const Matrix &B) {size_t n = height(), m = width();assert(n == B.height() && m == B.width());for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)(*this)[i][j] = ((*this)[i][j] + B[i][j]) % mod;return (*this);}Matrix &operator-=(const Matrix &B) {size_t n = height(), m = width();assert(n == B.height() && m == B.width());for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)(*this)[i][j] = ((*this)[i][j] - B[i][j] + mod) % mod;return (*this);}Matrix &operator*=(const Matrix &B) {size_t n = height(), m = B.width(), p = width();assert(p == B.height());vector< vector< T > > C(n, vector< T >(m, 0));for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)for(int k = 0; k < p; k++)C[i][j] = ((C[i][j] + (*this)[i][k] * B[k][j])) % mod;A.swap(C);return (*this);}Matrix &operator^=(long long k) {Matrix B = Matrix::I(height());while(k > 0) {if(k & 1) B *= *this;*this *= *this;k >>= 1LL;}A.swap(B.A);return (*this);}Matrix operator+(const Matrix &B) const {return (Matrix(*this) += B);}Matrix operator-(const Matrix &B) const {return (Matrix(*this) -= B);}Matrix operator*(const Matrix &B) const {return (Matrix(*this) *= B);}Matrix operator^(const long long k) const {return (Matrix(*this) ^= k);}friend ostream &operator<<(ostream &os, Matrix &p) {size_t n = p.height(), m = p.width();for(int i = 0; i < n; i++) {os << "[";for(int j = 0; j < m; j++) {os << p[i][j] << (j + 1 == m ? "]\n" : ",");}}return (os);}T determinant() {Matrix B(*this);assert(width() == height());T ret = 1;for(int i = 0; i < width(); i++) {int idx = -1;for(int j = i; j < width(); j++) {if(B[j][i] != 0) idx = j;}if(idx == -1) return (0);if(i != idx) {ret *= -1;swap(B[i], B[idx]);}ret *= B[i][i];T vv = B[i][i];for(int j = 0; j < width(); j++) {B[i][j] /= vv;}for(int j = i + 1; j < width(); j++) {T a = B[j][i];for(int k = 0; k < width(); k++) {B[j][k] -= B[i][k] * a;}}}return (ret);}};int main() {//cout.precision(10);cin.tie(0);ios::sync_with_stdio(false);ll a, b, n;cin >> a >> b >> n;Matrix<ll> A(2, 2);Matrix<ll> v(2, 1);v[0][0] = 1;A[0][0] = a;A[0][1] = b;A[1][0] = 1;A ^= n;v = A * v;cout << v[1][0] << endl;return 0;}