結果
| 問題 |
No.891 隣接3項間の漸化式
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-20 21:38:08 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 7,274 bytes |
| コンパイル時間 | 1,716 ms |
| コンパイル使用メモリ | 177,016 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-09-14 16:51:47 |
| 合計ジャッジ時間 | 2,897 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge6 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 39 |
ソースコード
#include <bits/stdc++.h>
#define whlie while
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define rep(i,N) for(int i = 0; i < (N); i++)
#define repr(i,N) for(int i = (N) - 1; i >= 0; i--)
#define rep1(i,N) for(int i = 1; i <= (N) ; i++)
#define repr1(i,N) for(int i = (N) ; i > 0 ; i--)
#define each(x,v) for(auto& x : v)
#define all(v) (v).begin(),(v).end()
#define sz(v) ((int)(v).size())
#define vrep(v,it) for(auto it = v.begin(); it != v.end(); it++)
#define vrepr(v,it) for(auto it = v.rbegin(); it != v.rend(); it++)
#define ini(...) int __VA_ARGS__; in(__VA_ARGS__)
#define inl(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define ins(...) string __VA_ARGS__; in(__VA_ARGS__)
using namespace std; void solve();
using ll = long long; using vl = vector<ll>;
using vi = vector<int>; using vvi = vector< vector<int> >;
constexpr int inf = 1001001001;
constexpr ll infLL = (1LL << 61) - 1;
struct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya;
template<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; }
template<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; }
template<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; }
template<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? " " : "") << v[i]; return os; }
template<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; }
void in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);}
void out(){cout << "\n";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << " "; out(u...);}
template<typename T>void die(T x){out(x); exit(0);}
#ifdef NyaanDebug
#include "NyaanDebug.h"
#define trc(...) do { cerr << #__VA_ARGS__ << " = "; dbg_out(__VA_ARGS__);} while(0)
#define trca(v,...) do { cerr << #v << " = "; array_out(v , __VA_ARGS__ );} while(0)
#else
#define trc(...)
#define trca(...)
int main(){solve();}
#endif
using P = pair<ll,ll>; using vp = vector<P>;
constexpr int MOD = /**/ 1000000007; //*/ 998244353;
/////////////////
#define size_t int
template< class T >
struct Matrix {
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const vector< T > &operator[](int k) const {
return (A.at(k));
}
inline vector< T > &operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
for(int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while(k > 0) {
if(k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const {
return (Matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for(int i = 0; i < n; i++) {
os << "[";
for(int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for(int i = 0; i < width(); i++) {
int idx = -1;
for(int j = i; j < width(); j++) {
if(B[j][i] != 0) idx = j;
}
if(idx == -1) return (0);
if(i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for(int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for(int j = i + 1; j < width(); j++) {
T a = B[j][i];
for(int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt< MOD >;
void solve(){
ini(a,b,n);
if(n==0) die(0);
if(n==1) die(1);
Matrix<modint> m(2);
m[0][0] = a; m[0][1] = b;
m[1][0] = 1; m[1][1] = 0;
m = m ^ n;
//cout << m;
out(m[1][0]);
}