結果
問題 | No.891 隣接3項間の漸化式 |
ユーザー |
![]() |
提出日時 | 2019-09-20 23:13:21 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 8,041 bytes |
コンパイル時間 | 1,989 ms |
コンパイル使用メモリ | 181,756 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-14 19:59:36 |
合計ジャッジ時間 | 3,157 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 39 |
ソースコード
#include<bits/stdc++.h>#define REP(i,n) for(int i=0,i##_len=(n);i<i##_len;++i)#define rep(i,a,b) for(int i=int(a);i<int(b);++i)#define All(x) (x).begin(),(x).end()using namespace std;typedef long long ll;constexpr ll mod=1e9+7;constexpr double eps=1e-9;class mint {private:ll _num,_mod;mint set(ll num){_num = num ;if(_num>=0) _num%=_mod;else _num+=(1-(_num+1)/_mod)*_mod;return *this;}ll _mpow(ll x, ll n){ //x^n(mod) ←普通にpow(x,n)では溢れてしまうため,随時mod計算 2分累乗法だから早いll ans = 1;while(n != 0){if(n&1) ans = ans*x % _mod;x = x*x % _mod;n = n >> 1;}return ans;}ll imod(ll n){return _mpow(n , _mod-2);}public:mint(){ _num = 0;_mod=mod; }mint(ll num){ _mod = mod; _num = (num+(1LL<<25)*mod) % mod; }mint(ll num,ll M){ _mod=M;_num=(num+(1LL<<25)*mod)%_mod; }mint(const mint &cp){_num=cp._num;_mod=cp._mod;}mint operator= (const ll x){ return set(x); }mint operator+ (const ll x){ return mint(_num + (x % _mod) , _mod); }mint operator- (const ll x){ return mint(_num - (x % _mod), _mod); }mint operator* (const ll x){ return mint(_num * (x % _mod) , _mod); }mint operator/ (ll x){ return mint(_num * imod(x) , _mod);}mint operator+=(const ll x){ return set(_num + (x % _mod)); }mint operator-=(const ll x){ return set(_num - (x % _mod)); }mint operator*=(const ll x){ return set(_num * (x % _mod)); }mint operator/=(ll x){ return set(_num * imod(x));}mint operator+ (const mint &x){ return mint(_num + x._num , _mod); }mint operator- (const mint &x){ return mint(_num - x._num , _mod);}mint operator* (const mint &x){ return mint(_num * x._num , _mod); }mint operator/ (mint x){ return mint(_num * imod(x._num) , _mod);}mint operator+=(const mint &x){ return set(_num + x._num); }mint operator-=(const mint &x){ return set(_num - x._num); }mint operator*=(const mint &x){ return set(_num * x._num); }mint operator/=(mint x){ return set(_num * imod(x._num));}bool operator<(const mint &x)const{return _num<x._num;}bool operator==(const mint &x)const{return _num==x._num;}bool operator>(const mint &x)const{return _num>x._num;}friend mint operator+(ll x,const mint &m){return mint(m._num + (x % m._mod) , m._mod);}friend mint operator-(ll x,const mint &m){return mint( (x % m._mod) - m._num , m._mod);}friend mint operator*(ll x,const mint &m){return mint(m._num * (x % m._mod) , m._mod);}friend mint operator/(ll x,mint m){return mint(m.imod(m._num) * x , m._mod);}explicit operator ll() { return _num; }explicit operator int() { return (int)_num; }friend ostream& operator<<(ostream &os, const mint &x){ os << x._num; return os; }friend istream& operator>>(istream &is, mint &x){ll val; is>>val; x.set(val); return is;}};template<typename T> class MAT{private:int row,col;vector<vector<T>> _A;MAT set(vector<vector<T>> A){_A = A ; return *this;}public:MAT(){ }MAT(int n,int m){if(n<1 || m<0){cout << "err Matrix::Matrix" <<endl;exit(1);}row = n;col = m?m:n;//m=0のとき単位行列を作るREP(i,row){vector<T> a(col,0.0);_A.push_back(a);}// 値の初期化if(m==0) REP(i,n) _A[i][i]=1.0;}MAT(const MAT &cp){_A=cp._A;row=cp.row;col=cp.col;}T* operator[] (int i){return _A[i].data();}MAT operator= (vector<vector<T>> x) {return set(x);}MAT operator+ (MAT x) {if(row!=x.row || col!=x.col){cout << "err Matrix::operator+" <<endl;cout << " not equal matrix size" <<endl;exit(0);}MAT r(row, col);REP(i,row) REP(j,col) r[i][j]=_A[i][j]+x[i][j];return r;}MAT operator- (MAT x) {if(row!=x.row || col!=x.col){cout << "err Matrix::operator-" <<endl;cout << " not equal matrix size" <<endl;exit(0);}MAT r(row, col);REP(i,row) REP(j,col) r[i][j]=_A[i][j]-x[i][j];return r;}MAT operator* (MAT x) {if(col!=x.row){cout << "err Matrix::operator*" <<endl;cout << " not equal matrix size" <<endl;exit(0);}MAT r(row, x.col);REP(i,row) REP(j,x.col) REP(k,col) r[i][j]+=_A[i][k]*x[k][j];return r;}MAT operator/ (T a){MAT r(row,col);REP(i,row) REP(j,col) r[i][j]=_A[i][j]/a;return r;}MAT operator^ (ll n){if(row!=col){cout << "err Matrix::operator^" <<endl;cout << " not equal matrix size" <<endl;exit(0);}MAT r(row,0),A=*this;while(n){if(n&1) r *= A;A*=A;n>>=1;}return r;}MAT operator+= (MAT x) {if(row!=x.row || col!=x.col){cout << "err Matrix::operator+=" <<endl;cout << " not equal matrix size" <<endl;exit(0);}MAT r(row, col);REP(i,row) REP(j,col) r[i][j]=_A[i][j]+x[i][j];return set(r._A);}MAT operator-= (MAT x) {if(row!=x.row || col!=x.col){cout << "err Matrix::operator-=" <<endl;cout << " not equal matrix size" <<endl;exit(0);}MAT r(row, col);REP(i,row) REP(j,col) r[i][j]=_A[i][j]-x[i][j];return set(r._A);}MAT operator*= (MAT x) {if(col!=x.row){cout << "err Matrix::operator*" <<endl;cout << " not equal matrix size" <<endl;exit(0);}MAT r(row, x.col);REP(i,row) REP(j,x.col) REP(k,col) r[i][j]+=_A[i][k]*x[k][j];return set(r._A);}MAT operator/=(T a){MAT r(row,col);REP(i,row) REP(j,col) r[i][j]=_A[i][j]/a;return r;}friend MAT operator* (T n,MAT x){MAT r(x.row,x.col);REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j];return r;}friend MAT operator* (MAT x,T n){MAT r(x.row,x.col);REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j];return r;}explicit operator vector<vector<T>>(){return _A;}friend ostream &operator<<(ostream &os,const MAT &x){ REP(i,x.row) REP(j,x.col) os<<x._A[i][j]<<" \n"[j==x.col-1]; return os;}friend istream &operator>>(istream &is,MAT &x){REP(i,x.row) REP(j,x.col) is>>x._A[i][j];return is;}int size_row(){return row;}int size_col(){return col;}MAT transpose(){MAT r(col,row);REP(i,col) REP(j,row) r[i][j]=_A[j][i];return r;}MAT inverse(){T buf;MAT<T> inv_a(row,0);vector<vector<T>> a=_A;//掃き出し法REP(i,row){buf=1/a[i][i];REP(j,row){a[i][j]*=buf;inv_a[i][j]*=buf;}REP(j,row){if(i!=j){buf=a[j][i];REP(k,row){a[j][k]-=a[i][k]*buf;inv_a[j][k]-=inv_a[i][k]*buf;}}}}return inv_a;}// O( n^3 ).int rank() {vector<vector<T>> A=_A;const int n = row, m = col;int r = 0;for(int i = 0; r < n && i < m; ++i) {int pivot = r;for(int j = r+1; j < n; ++j) if(fabs(A[j][i]) > fabs(A[pivot][i])) pivot = j;swap(A[pivot], A[r]);if(fabs(A[r][i]) < eps) continue;for (int k = m-1; k >= i; --k) A[r][k] /= A[r][i];rep(j,r+1,n) rep(k,i,m) A[j][k] -= A[r][k] * A[j][i];++r;}return r;}};int main(){MAT<mint> x(2,1),A(2,2);ll a,b,n;cin>>a>>b>>n;A[0][0]=a;A[0][1]=b;A[1][0]=1;x[0][0]=1;x[1][0]=0;x=(A^n)*x;cout<<x[1][0]<<endl;}