結果
| 問題 |
No.891 隣接3項間の漸化式
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-21 15:16:23 |
| 言語 | Common Lisp (sbcl 2.5.0) |
| 結果 |
AC
|
| 実行時間 | 12 ms / 2,000 ms |
| コード長 | 9,930 bytes |
| コンパイル時間 | 1,750 ms |
| コンパイル使用メモリ | 89,200 KB |
| 実行使用メモリ | 30,912 KB |
| 最終ジャッジ日時 | 2024-09-18 23:24:34 |
| 合計ジャッジ時間 | 3,469 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 39 |
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 18 SEP 2024 11:24:30 PM):
; file: /home/judge/data/code/Main.lisp
; in: SB-C:DEFTRANSFORM ARRAY-ELEMENT-TYPE
; (SB-C:DEFTRANSFORM ARRAY-ELEMENT-TYPE
; ((ARRAY))
; (LET ((TYPE (SB-C::LVAR-TYPE ARRAY)))
; (FLET ((ELEMENT-TYPE #
; #))
; (COND (#) (# #) (# #) (T #)))))
;
; caught STYLE-WARNING:
; Overwriting #<SB-C::TRANSFORM FUNCTION {100033B4E3}>
; in: DEFUN MAIN
; (AREF POLY 1)
;
; note: unable to
; optimize
; due to type uncertainty:
; The first argument is a (SIMPLE-ARRAY * (*)), not a SIMPLE-STRING.
;
; note: unable to
; avoid runtime dispatch on array element type
; because:
; Upgraded element type of array is not known at compile time.
; (POLY-POWER BASE N DIVISOR +MOD+)
; --> BLOCK LABELS RECUR BLOCK COND IF IF OR LET LET POLY-MOD! POLY-MULT BLOCK
; --> LET* LOOP BLOCK LET TAGBODY UNLESS IF ZEROP
; ==>
; 1
;
; note: unable to
; optimize
; due to type uncertainty:
; The first argument is a (SIMPLE-ARRAY * (*)), not a SIMPLE-STRING.
;
; note: unable to
; avoid runtime dispatch on array element type
; because:
; Upgraded element type of array is not known at compile time.
;
; note: unable to
; open-code FLOAT to RATIONAL comparison
; due to type uncertainty:
; The first argument is a NUMBER, not a SINGLE-FLOAT.
;
; note: unable to
; open-code FLOAT to RATIONAL comparison
; due to type uncertainty:
; The first argument is a NUMBER, not a DOUBLE-FLOAT.
;
; note: unable to
; open-code FLOAT to RATIONAL comparison
; due to type uncertainty:
; The first argument is a NUMBER, not a (COMPLEX SINGLE-FLOAT).
;
; note: unable to
; open-code FLOAT to RATIONAL comparison
; due to type uncertainty:
; The first argument is a NUMBER, not a (COMPLEX DOUBLE-FLOAT).
;
; note: unable to open code because: The operands might not be the same type.
;
; note: unable to
; optimize
; due to type uncertainty:
; The
ソースコード
;; -*- coding: utf-8 -*-
(eval-when (:compile-toplevel :load-toplevel :execute)
(sb-int:defconstant-eqx OPT
#+swank '(optimize (speed 3) (safety 2))
#-swank '(optimize (speed 3) (safety 0) (debug 0))
#'equal)
#+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
#-swank (set-dispatch-macro-character
#\# #\> (lambda (s c p) (declare (ignore c p)) (read s nil nil t))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)
#-swank (disable-debugger) ; for CS Academy
;; BEGIN_INSERTED_CONTENTS
;;;
;;; ARRAY-ELEMENT-TYPE is not constant-folded on SBCL version earlier than
;;; 1.5.0. See
;;; https://github.com/sbcl/sbcl/commit/9f0d12e7ab961828931d01c0b2a76a5885ad35d2
;;;
(eval-when (:compile-toplevel :load-toplevel :execute)
(sb-c:deftransform array-element-type ((array))
(let ((type (sb-c::lvar-type array)))
(flet ((element-type (type)
(and (sb-c::array-type-p type)
(sb-int:neq (sb-kernel::array-type-specialized-element-type type) sb-kernel:*wild-type*)
(sb-kernel:type-specifier (sb-kernel::array-type-specialized-element-type type)))))
(cond ((let ((type (element-type type)))
(and type
`',type)))
((sb-kernel:union-type-p type)
(let (result)
(loop for type in (sb-kernel:union-type-types type)
for et = (element-type type)
unless (and et
(if result
(equal result et)
(setf result et)))
do (sb-c::give-up-ir1-transform))
`',result))
((sb-kernel:intersection-type-p type)
(loop for type in (sb-kernel:intersection-type-types type)
for et = (element-type type)
when et
return `',et
finally (sb-c::give-up-ir1-transform)))
(t
(sb-c::give-up-ir1-transform)))))))
;; NOTE: These are poor man's utilities for polynomial arithmetic. NOT
;; sufficiently equipped in all senses.
(declaim (inline poly-value))
(defun poly-value (poly x modulus)
"Returns the value f(x)."
(declare (vector poly))
(let ((x^i 1)
(res 0))
(declare (fixnum x^i res))
(dotimes (i (length poly))
(setq res (mod (+ res (* x^i (aref poly i))) modulus))
(setq x^i (mod (* x^i x) modulus)))
res))
;; naive multiplication in O(n^2)
(declaim (inline poly-mult))
(defun poly-mult (u v modulus &optional result-vector)
"Multiplies u(x) and v(x) over Z/nZ in O(deg(u)deg(v)) time.
The result is stored in RESULT-VECTOR if it is given, otherwise a new vector is
created."
(declare (vector u v)
((or null vector) result-vector)
((integer 1 #.most-positive-fixnum) modulus))
(let* ((deg1 (loop for i from (- (length u) 1) downto 0
while (zerop (aref u i))
finally (return i)))
(deg2 (loop for i from (- (length v) 1) downto 0
while (zerop (aref v i))
finally (return i)))
(len (max 0 (+ deg1 deg2 1)))
(res (or result-vector (make-array len :element-type (array-element-type u)))))
(declare ((integer -1 (#.array-total-size-limit)) deg1 deg2 len))
(dotimes (d len res)
;; 0 <= i <= deg1, 0 <= j <= deg2
(loop with coef of-type (integer 0 #.most-positive-fixnum) = 0
for i from (max 0 (- d deg2)) to (min d deg1)
for j = (- d i)
do (setq coef (mod (+ coef (* (aref u i) (aref v j)))
modulus))
finally (setf (aref res d) coef)))))
(declaim (ftype (function * (values (mod #.most-positive-fixnum) &optional)) %mod-inverse))
(defun %mod-inverse (a modulus)
"Solves ax ≡ 1 mod m. A and M must be coprime."
(declare (optimize (speed 3))
(integer a)
((integer 1 #.most-positive-fixnum) modulus))
(labels ((%gcd (a b)
(declare (optimize (safety 0))
((integer 0 #.most-positive-fixnum) a b))
(if (zerop b)
(values 1 0)
(multiple-value-bind (p q) (floor a b) ; a = pb + q
(multiple-value-bind (v u) (%gcd b q)
(declare (fixnum u v))
(values u (the fixnum (- v (the fixnum (* p u))))))))))
(mod (%gcd (mod a modulus) modulus) modulus)))
;; naive division in O(n^2)
;; Reference: http://web.cs.iastate.edu/~cs577/handouts/polydivide.pdf
(declaim (inline poly-floor!))
(defun poly-floor! (u v modulus &optional quotient)
"Returns the quotient q(x) and the remainder r(x) over Z/nZ: u(x) = q(x)v(x) +
r(x), deg(r) < deg(v). This function destructively modifies U. The time
complexity is O((deg(u)-deg(v))deg(v)).
The quotient is stored in QUOTIENT if it is given, otherwise a new vector is
created.
Note that MODULUS and V[deg(V)] must be coprime."
(declare (vector u v)
((integer 1 #.most-positive-fixnum) modulus))
;; m := deg(u), n := deg(v)
(let* ((m (loop for i from (- (length u) 1) downto 0
while (zerop (aref u i))
finally (return i)))
(n (loop for i from (- (length v) 1) downto 0
unless (zerop (aref v i))
do (return i)
finally (error 'division-by-zero
:operation #'poly-floor!
:operands (list u v))))
(quot (or quotient
(make-array (max 0 (+ 1 (- m n)))
:element-type (array-element-type u))))
;; FIXME: Is it better to signal an error in non-coprime case?
(inv (%mod-inverse (aref v n) modulus)))
(declare ((integer -1 (#.array-total-size-limit)) m n))
(loop for k from (- m n) downto 0
do (setf (aref quot k)
(mod (* (aref u (+ n k)) inv) modulus))
(loop for j from (+ n k -1) downto k
do (setf (aref u j)
(mod (- (aref u j)
(* (aref quot k) (aref v (- j k))))
modulus))))
(loop for i from (- (length u) 1) downto n
do (setf (aref u i) 0)
finally (return (values quot u)))))
;; naive division in O(n^2)
(declaim (inline poly-mod!))
(defun poly-mod! (poly divisor modulus)
"Returns the remainder of POLY divided by DIVISOR over Z/nZ. This function
destructively modifies POLY."
(declare (vector poly divisor)
((integer 1 #.most-positive-fixnum) modulus))
(let* ((m (loop for i from (- (length poly) 1) downto 0
while (zerop (aref poly i))
finally (return i)))
(n (loop for i from (- (length divisor) 1) downto 0
unless (zerop (aref divisor i))
do (return i)
finally (error 'division-by-zero
:operation #'poly-mod!
:operands (list poly divisor))))
(inv (%mod-inverse (aref divisor n) modulus)))
(declare ((integer -1 (#.array-total-size-limit)) m n))
(loop for pivot-deg from m downto n
for factor of-type (integer 0 #.most-positive-fixnum)
= (mod (* (aref poly pivot-deg) inv) modulus)
do (loop for delta from 0 to n
do (setf (aref poly (- pivot-deg delta))
(mod (- (aref poly (- pivot-deg delta))
(* factor (aref divisor (- n delta))))
modulus))))
poly))
(declaim (inline poly-power))
(defun poly-power (poly exponent divisor modulus)
"Returns POLY to the power of EXPONENT modulo DIVISOR over Z/nZ."
(declare (vector poly divisor)
((integer 0 #.most-positive-fixnum) exponent)
((integer 1 #.most-positive-fixnum) modulus))
(labels
((recur (power)
(declare ((integer 0 #.most-positive-fixnum) power))
(cond ((zerop power)
(make-array 1 :element-type (array-element-type poly) :initial-element 1))
((oddp power)
(poly-mod! (poly-mult poly (recur (- power 1)) modulus)
divisor modulus))
((let ((res (recur (floor power 2))))
(poly-mod! (poly-mult res res modulus)
divisor modulus))))))
(recur exponent)))
(defmacro dbg (&rest forms)
#+swank
(if (= (length forms) 1)
`(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
`(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
#-swank (declare (ignore forms)))
(defmacro define-int-types (&rest bits)
`(progn
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)
(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
(let ((*read-default-float-format* 'double-float))
(prog1 (princ obj stream) (terpri stream))))
(defconstant +mod+ 1000000007)
;;;
;;; Body
;;;
(defun main ()
(declare #.OPT)
(let* ((a (read))
(b (read))
(n (read))
(divisor (coerce (list (- +mod+ b) (- +mod+ a) 1 0 0 0)
'(simple-array uint32 (*))))
(base (make-array 6 :element-type 'uint32 :initial-contents '(0 1 0 0 0 0)))
(poly (poly-power base n divisor +mod+)))
(declare (uint32 a b)
((simple-array uint32 (*)) divisor base))
(println (aref poly 1))))
#-swank (main)