結果
| 問題 |
No.891 隣接3項間の漸化式
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-21 15:33:43 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 6,663 bytes |
| コンパイル時間 | 2,015 ms |
| コンパイル使用メモリ | 175,584 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-18 23:55:45 |
| 合計ジャッジ時間 | 3,264 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 39 |
ソースコード
#include <bits/stdc++.h>
using namespace std::literals::string_literals;
using i64 = long long;
using std::cout;
using std::endl;
using std::cin;
template<typename T>
std::vector<T> make_v(size_t a){return std::vector<T>(a);}
template<typename T,typename... Ts>
auto make_v(size_t a,Ts... ts){
return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));
}
template <std::uint_fast64_t Modulus>
class modint {
using u32 = std::uint_fast32_t;
using u64 = std::uint_fast64_t;
using i64 = std::int_fast64_t;
public:
u64 a;
constexpr modint() noexcept : a(0) {}
constexpr modint(const u64 & x) noexcept : a(x % Modulus) {}
constexpr u64 &value() noexcept { return a; }
constexpr const u64 &value() const noexcept { return a; }
const modint inverse() const {
i64 x = a, b = Modulus, u = 1, v = 0;
while(b > 0) {
auto t = x / b;
std::swap(x -= t * b, b);
std::swap(u -= t * v, v);
}
return modint(u);
}
const modint pow(i64 k) const {
return modint(*this) ^ k;
}
static u64 mod() { return Modulus; }
constexpr modint & operator+=(const modint & rhs) noexcept {
a += rhs.a;
if (a >= Modulus) a -= Modulus;
return *this;
}
constexpr modint & operator-=(const modint & rhs) noexcept {
if (a < rhs.a) a += Modulus;
a -= rhs.a;
return *this;
}
constexpr modint & operator*=(const modint & rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint & operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) (*this) *= rhs;
rhs *= rhs;
exp /= 2;
}
return *this;
}
constexpr modint & operator^=(u64 k) noexcept {
auto b = modint(1);
while(k) {
if(k & 1) b = b * (*this);
(*this) *= (*this);
k >>= 1;
}
return (*this) = b;
}
constexpr modint & operator=(const modint & rhs) noexcept {
a = rhs.a;
return (*this);
}
constexpr modint operator+(const modint & rhs) const noexcept { return modint(*this) += rhs; }
constexpr modint operator-(const modint & rhs) const noexcept { return modint(*this) -= rhs; }
constexpr modint operator*(const modint & rhs) const noexcept { return modint(*this) *= rhs; }
constexpr modint operator/(const modint & rhs) const noexcept { return modint(*this) /= rhs; }
constexpr modint operator^(const u64 & k) const noexcept { return modint(*this) ^= k; }
constexpr modint operator-() const noexcept { return modint(Modulus - a); }
constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
const bool operator==(const modint & rhs) const noexcept { return a == rhs.a; };
const bool operator!=(const modint & rhs) const noexcept { return a != rhs.a; };
const bool operator<=(const modint & rhs) const noexcept { return a <= rhs.a; };
const bool operator>=(const modint & rhs) const noexcept { return a >= rhs.a; };
const bool operator<(const modint & rhs) const noexcept { return a < rhs.a; };
const bool operator>(const modint & rhs) const noexcept { return a > rhs.a; };
explicit operator bool() const { return a; }
explicit operator u32() const { return a; }
friend std::ostream & operator<<(std::ostream & os, const modint & p) {
return os << p.a;
}
friend std::istream & operator>>(std::istream & is, modint & p) {
u64 t;
is >> t;
p = modint(t);
return is;
}
};
template<class T>
class square_matrix {
using value_type = T;
using i64 = int64_t;
std::vector<std::vector<value_type>> data;
public:
square_matrix() {}
square_matrix(const size_t & n) : data(n, std::vector<value_type>(n, T())) {}
static const square_matrix E(const size_t & n) {
square_matrix e(n);
for(size_t i = 0; i < n; i++) e[i][i] = 1;
return e;
}
static const square_matrix O(const size_t & n) {
return square_matrix(n);
}
const size_t height() const {
return data.size();
}
const size_t width() const {
return data.size();
}
const T determinant() const {
square_matrix B(*this);
T ret = 1;
for(int i = 0; i < width(); i++) {
int ind = -1;
for(int j = i; j < width(); j++) {
if(B[j][i] == 0) continue;
ind = j;
}
if(ind == -1) return 0;
if(i != ind) {
ret *= -1;
std::swap(B[i], B[ind]);
}
ret *= B[i][i];
for(int j = 0; j < width(); j++) B[i][j] /= B[i][i];
for(int j = i + 1; j < width(); j++)
for(int k = 0; k < width(); k++)
B[j][k] -= B[i][k] * B[j][i];
}
return ret;
}
const std::vector<value_type> & operator[](const size_t & k) const {
return data.at(k);
}
std::vector<value_type> & operator[](const size_t & k) {
return data.at(k);
}
square_matrix & operator+=(const square_matrix & B) {
assert(height() == B.height());
for(int i = 0; i < height(); i++)
for(int j = 0; j < width(); j++)
(*this)[i][j] += B[i][j];
return (*this);
}
square_matrix & operator-=(const square_matrix & B) {
assert(height() == B.height());
for(int i = 0; i < height(); i++)
for(int j = 0; j < width(); j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
square_matrix & operator*=(const square_matrix & B) {
assert(height() == B.height());
auto C = square_matrix::O(height());
for(int i = 0; i < height(); i++)
for(int j = 0; j < width(); j++)
for(int k = 0; k < height(); k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
return (*this) = C;
}
square_matrix & operator^=(i64 k) {
auto B = square_matrix::E(height());
while(k) {
if(k & 1) B *= (*this);
(*this) *= (*this);
k >>= 1;
}
return (*this) = B;
}
square_matrix & operator=(const square_matrix & B) {
(*this).data = B.data;
return (*this);
}
const square_matrix operator+(const square_matrix & B) const {
return (square_matrix(*this) += B);
}
const square_matrix operator-(const square_matrix & B) const {
return (square_matrix(*this) -= B);
}
const square_matrix operator*(const square_matrix & B) const {
return (square_matrix(*this) *= B);
}
const square_matrix operator^(const i64 & k) const {
return (square_matrix(*this) ^= k);
}
const bool operator==(const square_matrix & B) const {
return (data == B.data);
}
friend std::ostream & operator<<(std::ostream & os, square_matrix & p) {
for(int i = 0; i < height(); i++) {
os << "[";
for(int j = 0; j < width(); j++) {
os << p[i][j] << (j + 1 == width() ? "]\n" : ", ");
}
}
return os;
}
};
using mint = modint<(int)(1e9 + 7)>;
int main() {
int a, b, n; scanf("%d%d%d", &a, &b, &n);
if(n == 0) {
printf("0\n");
return 0;
}
square_matrix<mint> A(2);
A[0][0] = a;
A[0][1] = b;
A[1][0] = 1;
A ^= n - 1;
printf("%d\n", A[0][0]);
return 0;
}