結果
問題 | No.891 隣接3項間の漸化式 |
ユーザー | kyuna |
提出日時 | 2019-09-24 06:07:58 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,757 bytes |
コンパイル時間 | 958 ms |
コンパイル使用メモリ | 82,188 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-19 04:56:48 |
合計ジャッジ時間 | 2,322 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | WA | - |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | WA | - |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | WA | - |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | WA | - |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 1 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
ソースコード
#include <algorithm> #include <iostream> #include <vector> using namespace std; //----------------------- const int MOD = (int)1e9 + 7; struct mint { int n; mint(int n_ = 0) : n(n_ % MOD) { if (n < 0) n += MOD; } }; mint operator+(mint a, mint b) { return (a.n += b.n) >= MOD ? a.n - MOD : a.n; } mint operator-(mint a, mint b) { return (a.n -= b.n) < 0 ? a.n + MOD : a.n; } mint operator*(mint a, mint b) { return 1LL * a.n * b.n % MOD; } mint &operator+=(mint &a, mint b) { return a = a + b; } mint &operator-=(mint &a, mint b) { return a = a - b; } mint &operator*=(mint &a, mint b) { return a = a * b; } ostream &operator<<(ostream &os, mint a) { return os << a.n; } istream &operator>>(istream &is, mint& a) { return is >> a.n; } mint inv(mint x) { long long a = x.n, b = MOD, u = 1, v = 0; while (b) { long long t = a/b; swap((a -= t*b), b); swap((u -= t*v), v); } return mint(u); } mint operator^(mint a, long long n) { mint r = 1; while (n) { if (n & 1) r *= a; a *= a; n >>= 1; } return r; } bool operator<(const mint &a, const mint &b) { return a.n < b.n; } //----------------------- template<class T> ostream& operator<<(ostream& os, const vector<T>& vec) { for (auto &vi: vec) os << vi << " "; return os; } template<class T> struct Matrix { vector<vector<T>> val; Matrix(int n = 1, int m = 1, T x = 0) { val.assign(n, vector<T>(m, x)); } size_t size() const { return val.size(); } vector<T>& operator[](int i) { return val[i]; } const vector<T>& operator[](int i) const { return val[i]; } friend ostream& operator<<(ostream& os, const Matrix<T> M) { for (int i = 0; i < M.size(); ++i) os << M[i] << " \n"[i != M.size() - 1]; return os; } }; template<class T> Matrix<T> operator^(Matrix<T> A, long long n) { Matrix<T> R(A.size(), A.size()); for (int i = 0; i < A.size(); ++i) R[i][i] = 1; while (n > 0) { if (n & 1) R = R * A; A = A * A; n >>= 1; } return R; } template<class T> Matrix<T> operator*(const Matrix<T>& A, const Matrix<T>& B) { Matrix<T> R(A.size(), B[0].size()); for (int i = 0; i < A.size(); ++i) for (int j = 0; j < B[0].size(); ++j) for (int k = 0; k < B.size(); ++k) R[i][j] += A[i][k] * B[k][j]; return R; } template<class T> T fib(long long n) { Matrix<T> A(2, 2); A[0][0] = A[0][1] = A[1][0] = 1; return (A ^ (n + 1))[0][0]; } template<class T> T rec3(T a, T b, long long n, T x0 = 0, T x1 = 1) { Matrix<T> A(2, 2); A[0][0] = a; A[0][1] = b; // x[i + 2] = a * x[i + 1] + b * x[i] A[1][0] = 1; A[1][1] = 0; auto pow = A ^ (n - 1); return pow[0][0] * x1 + pow[0][1] * x0; } int main() { mint a, b; cin >> a >> b; long long n; cin >> n; cout << rec3(a, b, n) << endl; return 0; }