結果
問題 | No.895 MESE |
ユーザー | QCFium |
提出日時 | 2019-09-27 21:52:29 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 19 ms / 2,000 ms |
コード長 | 3,205 bytes |
コンパイル時間 | 1,660 ms |
コンパイル使用メモリ | 172,004 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-24 22:52:16 |
合計ジャッジ時間 | 2,688 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,948 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 9 ms
6,940 KB |
testcase_14 | AC | 15 ms
6,944 KB |
testcase_15 | AC | 15 ms
6,944 KB |
testcase_16 | AC | 11 ms
6,940 KB |
testcase_17 | AC | 6 ms
6,940 KB |
testcase_18 | AC | 19 ms
6,944 KB |
testcase_19 | AC | 19 ms
6,940 KB |
testcase_20 | AC | 19 ms
6,944 KB |
testcase_21 | AC | 19 ms
6,940 KB |
testcase_22 | AC | 19 ms
6,944 KB |
testcase_23 | AC | 19 ms
6,940 KB |
testcase_24 | AC | 19 ms
6,944 KB |
testcase_25 | AC | 19 ms
6,944 KB |
testcase_26 | AC | 19 ms
6,944 KB |
testcase_27 | AC | 18 ms
6,940 KB |
testcase_28 | AC | 19 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> int ri() { int n; scanf("%d", &n); return n; } int64_t rll() { long long n; scanf("%lld", &n); return n; } #define MOD 1000000007 template<int mod> struct ModInt{ int x; ModInt():x(0){} ModInt(long long y):x(y>=0?y%mod:(mod-(-y)%mod)%mod){} ModInt &operator+=(const ModInt &p){ if((x+=p.x)>=mod)x-=mod; return *this; } ModInt &operator-=(const ModInt &p){ if((x+=mod-p.x)>=mod)x-=mod; return *this; } ModInt &operator*=(const ModInt &p){ x=(int)(1LL*x*p.x%mod); return *this; } ModInt &operator/=(const ModInt &p){ *this*=p.inverse(); return *this; } ModInt &operator^=(long long p){ ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-()const{return ModInt(-x);} ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;} ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;} ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;} ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;} ModInt operator^(long long p)const{return ModInt(*this)^=p;} bool operator==(const ModInt &p)const{return x==p.x;} bool operator!=(const ModInt &p)const{return x!=p.x;} explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) {x = p; return ModInt(*this);} // added by QCFium ModInt inverse()const{ int a=x,b=mod,u=1,v=0,t; while(b>0){ t=a/b; a-=t*b; std::swap(a,b); u-=t*v; std::swap(u,v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os,const ModInt<mod> &p){ return os<<p.x; } friend std::istream &operator>>(std::istream &is,ModInt<mod> &a){ long long x; is>>x; a=ModInt<mod>(x); return (is); } }; typedef ModInt<MOD> mint; struct MComb { std::vector<mint> fact; std::vector<mint> inversed; MComb(int n) { // O(n+log(mod)) fact = std::vector<mint>(n+1,1); for (int i = 1; i <= n; i++) fact[i] = fact[i-1]*mint(i); inversed = std::vector<mint>(n+1); inversed[n] = fact[n] ^ (MOD-2); for (int i = n - 1; i >= 0; i--) inversed[i]=inversed[i+1]*mint(i+1); } mint ncr(int n, int r) { return (fact[n] * inversed[r] * inversed[n-r]); } mint npr(int n, int r) { return (fact[n] * inversed[n-r]); } mint nhr(int n, int r) { assert(n+r-1 < (int)fact.size()); return ncr(n+r-1, r); } }; int main() { int a = ri(), b = ri(), c = ri(); MComb com(a + b + c + 1); mint base = com.ncr(b + c - 1, c); // a + b + c - 1 => a // low bit sum * (c / (b + c - 1)) * base mint bitsum = com.ncr(a + b + c - 1, b + c) * ((mint(2) ^ (a + b + c - 1)) - 1) * (b + c) / (a + b + c - 1); for (int i = 0; i < a + b + c - 1; i++) { if (b + c - 1 <= i) bitsum -= com.ncr(i, b + c - 1) * (mint(2) ^ i); } std::cout << bitsum * (mint(c) / (b + c - 1)) * base << std::endl; return 0; }