結果
問題 | No.895 MESE |
ユーザー | りあん |
提出日時 | 2019-09-30 18:33:20 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
AC
|
実行時間 | 85 ms / 2,000 ms |
コード長 | 14,661 bytes |
コンパイル時間 | 1,099 ms |
コンパイル使用メモリ | 123,748 KB |
実行使用メモリ | 30,960 KB |
最終ジャッジ日時 | 2024-10-03 05:22:39 |
合計ジャッジ時間 | 3,487 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 24 ms
26,356 KB |
testcase_01 | AC | 22 ms
24,316 KB |
testcase_02 | AC | 24 ms
24,196 KB |
testcase_03 | AC | 24 ms
24,188 KB |
testcase_04 | AC | 25 ms
26,436 KB |
testcase_05 | AC | 24 ms
24,448 KB |
testcase_06 | AC | 23 ms
24,280 KB |
testcase_07 | AC | 22 ms
22,192 KB |
testcase_08 | AC | 25 ms
26,364 KB |
testcase_09 | AC | 23 ms
24,052 KB |
testcase_10 | AC | 24 ms
22,460 KB |
testcase_11 | AC | 24 ms
24,184 KB |
testcase_12 | AC | 24 ms
24,448 KB |
testcase_13 | AC | 58 ms
27,128 KB |
testcase_14 | AC | 60 ms
26,932 KB |
testcase_15 | AC | 68 ms
29,348 KB |
testcase_16 | AC | 61 ms
26,748 KB |
testcase_17 | AC | 57 ms
27,004 KB |
testcase_18 | AC | 85 ms
28,776 KB |
testcase_19 | AC | 83 ms
29,040 KB |
testcase_20 | AC | 84 ms
28,672 KB |
testcase_21 | AC | 79 ms
28,828 KB |
testcase_22 | AC | 81 ms
28,828 KB |
testcase_23 | AC | 83 ms
30,956 KB |
testcase_24 | AC | 84 ms
30,960 KB |
testcase_25 | AC | 82 ms
28,720 KB |
testcase_26 | AC | 82 ms
28,980 KB |
testcase_27 | AC | 82 ms
28,924 KB |
testcase_28 | AC | 79 ms
28,668 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.IO; using System.Threading; using System.Text; using System.Diagnostics; using static util; using P = pair<int, int>; using Number = System.Int64; class Program { static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; static Scan sc = new Scan(); const int M = 1000000007; const int M2 = 998244353; const long LM = 1L << 60; const double eps = 1e-11; static void DBG(string a) => Console.WriteLine(a); static void DBG<T>(IEnumerable<T> a) => DBG(string.Join(" ", a)); static void DBG(params object[] a) => DBG(string.Join(" ", a)); static void Prt(string a) => sw.WriteLine(a); static void Prt<T>(IEnumerable<T> a) => Prt(string.Join(" ", a)); static void Prt(params object[] a) => Prt(string.Join(" ", a)); static void Main(string[] args) { var solver = new Solver(); // var t = new Thread(solver.solve, 1 << 26); // 64 MB // t.Start(); // t.Join(); solver.solve(); sw.Flush(); } class Solver { public void solve() { int a, b, c; sc.Multi(out a, out b, out c); MyMath.setfacts(a + b + c + 9); long ans = 0; long p = 1; for (int i = 0; i < a + b + c - 2; i++) { long cnt = (MyMath.comb(a + b - 1, b) - MyMath.comb(i + 1 - c, b) + M) % M; ans = (ans + p * cnt % M * MyMath.comb(i, c - 1)) % M; ans = (ans + (p - 1) * cnt % M * MyMath.comb(i - 1, c - 2)) % M; p = p * 2 % M; } Prt(ans); } // end Solver.solve } } class pair<T, U> : IComparable<pair<T, U>> { public T v1; public U v2; public pair() : this(default(T), default(U)) {} public pair(T v1, U v2) { this.v1 = v1; this.v2 = v2; } public int CompareTo(pair<T, U> a) { int c = Comparer<T>.Default.Compare(v1, a.v1); return c != 0 ? c : Comparer<U>.Default.Compare(v2, a.v2); } public override string ToString() => v1 + " " + v2; public void Deconstruct(out T a, out U b) { a = v1; b = v2; } public static bool operator>(pair<T, U> a, pair<T, U> b) => a.CompareTo(b) > 0; public static bool operator<(pair<T, U> a, pair<T, U> b) => a.CompareTo(b) < 0; public static bool operator>=(pair<T, U> a, pair<T, U> b) => a.CompareTo(b) >= 0; public static bool operator<=(pair<T, U> a, pair<T, U> b) => a.CompareTo(b) <= 0; } static class util { public static pair<T, U> make_pair<T, U>(T v1, U v2) => new pair<T, U>(v1, v2); public static bool inside(int i, int j, int h, int w) => i >= 0 && i < h && j >= 0 && j < w; static readonly int[] dd = { 0, 1, 0, -1 }; static readonly string dstring = "RDLU"; public static P[] adjacents(this P p) => adjacents(p.v1, p.v2); public static P[] adjacents(this P p, int h, int w) => adjacents(p.v1, p.v2, h, w); public static pair<P, char>[] adjacents_with_str(int i, int j) => Enumerable.Range(0, dd.Length).Select(k => new pair<P, char>(new P(i + dd[k], j + dd[k ^ 1]), dstring[k])).ToArray(); public static pair<P, char>[] adjacents_with_str(int i, int j, int h, int w) => Enumerable.Range(0, dd.Length).Select(k => new pair<P, char>(new P(i + dd[k], j + dd[k ^ 1]), dstring[k])) .Where(p => inside(p.v1.v1, p.v1.v2, h, w)).ToArray(); public static P[] adjacents(int i, int j) => Enumerable.Range(0, dd.Length).Select(k => new P(i + dd[k], j + dd[k ^ 1])).ToArray(); public static P[] adjacents(int i, int j, int h, int w) => Enumerable.Range(0, dd.Length).Select(k => new P(i + dd[k], j + dd[k ^ 1])).Where(p => inside(p.v1, p.v2, h, w)).ToArray(); public static void Assert(bool cond) { if (!cond) throw new Exception(); } public static Dictionary<T, int> compress<T>(this IEnumerable<T> a) => a.Distinct().OrderBy(v => v).Select((v, i) => new { v, i }).ToDictionary(p => p.v, p => p.i); public static Dictionary<T, int> compress<T>(params IEnumerable<T>[] a) => compress(a.Aggregate(Enumerable.Union)); public static T[] inv<T>(this Dictionary<T, int> dic) { var res = new T[dic.Count]; foreach (var item in dic) res[item.Value] = item.Key; return res; } public static void swap<T>(ref T a, ref T b) where T : struct { var t = a; a = b; b = t; } public static void swap<T>(this IList<T> a, int i, int j) where T : struct { var t = a[i]; a[i] = a[j]; a[j] = t; } public static T[] copy<T>(this IList<T> a) { var ret = new T[a.Count]; for (int i = 0; i < a.Count; i++) ret[i] = a[i]; return ret; } } class Scan { StreamReader sr; public Scan() { sr = new StreamReader(Console.OpenStandardInput()); } public Scan(string path) { sr = new StreamReader(path); } public int Int => int.Parse(Str); public long Long => long.Parse(Str); public double Double => double.Parse(Str); public string Str => sr.ReadLine().Trim(); public pair<T, U> Pair<T, U>() { T a; U b; Multi(out a, out b); return new pair<T, U>(a, b); } public P P => Pair<int, int>(); public int[] IntArr => StrArr.Select(int.Parse).ToArray(); public long[] LongArr => StrArr.Select(long.Parse).ToArray(); public double[] DoubleArr => StrArr.Select(double.Parse).ToArray(); public string[] StrArr => Str.Split(new[]{' '}, StringSplitOptions.RemoveEmptyEntries); bool eq<T, U>() => typeof(T).Equals(typeof(U)); T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T)); T cv<T>(string s) => eq<T, int>() ? ct<T, int>(int.Parse(s)) : eq<T, long>() ? ct<T, long>(long.Parse(s)) : eq<T, double>() ? ct<T, double>(double.Parse(s)) : eq<T, char>() ? ct<T, char>(s[0]) : ct<T, string>(s); public void Multi<T>(out T a) => a = cv<T>(Str); public void Multi<T, U>(out T a, out U b) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); } public void Multi<T, U, V>(out T a, out U b, out V c) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); } public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); } public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); } } static class MyMath { public static long Mod = 1000000007; public static bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public static bool[] sieve(int n) { var p = new bool[n + 1]; for (int i = 2; i <= n; i++) p[i] = true; for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false; return p; } public static bool[] segmentSieve(long l, long r) { int sqn = (int)Math.Sqrt(r + 9); var ps = getprimes(sqn); var sieve = new bool[r - l + 1]; for (long i = l; i <= r; i++) sieve[i - l] = true; foreach (long p in ps) { if (p * p > r) break; for (long i = p >= l ? p * p : (l + p - 1) / p * p; i <= r; i += p) sieve[i - l] = false; } return sieve; } public static bool[] segmentSieve(long l, long r, List<int> ps) { var sieve = new bool[r - l + 1]; for (long i = l; i <= r; i++) sieve[i - l] = true; foreach (long p in ps) { if (p * p > r) break; for (long i = p >= l ? p * p : (l + p - 1) / p * p; i <= r; i += p) sieve[i - l] = false; } return sieve; } public static List<int> getprimes(int n) { var prs = new List<int>(); var p = sieve(n); for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i); return prs; } public static long pow(long a, long b, long mod) { a %= mod; // if (a == 0) return 0; if (b == 0) return 1; var t = pow(a, b / 2, mod); if ((b & 1) == 0) return t * t % mod; return t * t % mod * a % mod; } public static long pow(long a, long b) { a %= Mod; // if (a == 0) return 0; if (b == 0) return 1; var t = pow(a, b / 2); if ((b & 1) == 0) return t * t % Mod; return t * t % Mod * a % Mod; } public static long inv(long a) => pow(a, Mod - 2); public static long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } // a x + b y = gcd(a, b) public static long extgcd(long a, long b, out long x, out long y) { long g = a; x = 1; y = 0; if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; } return g; } // 中国剰余定理 // リターン値を (r, m) とすると解は x ≡ r (mod. m) // 解なしの場合は (0, -1) をリターン public static pair<long, long> chineserem(IList<long> b, IList<long> m) { long r = 0, M = 1; for (int i = 0; i < b.Count; ++i) { long p, q; long d = extgcd(M, m[i], out p, out q); // p is inv of M/d (mod. m[i]/d) if ((b[i] - r) % d != 0) return new pair<long, long>(0, -1); long tmp = (b[i] - r) / d * p % (m[i]/d); r += M * tmp; M *= m[i]/d; } return new pair<long, long>((r % M + M) % M, M); } public static long lcm(long a, long b) => a / gcd(a, b) * b; static long[] facts, invs; public static void setfacts(int n) { facts = new long[n + 1]; facts[0] = 1; for (int i = 1; i <= n; i++) facts[i] = facts[i - 1] * i % Mod; invs = new long[n + 1]; invs[n] = inv(facts[n]); for (int i = n; i > 0 ; i--) invs[i - 1] = invs[i] * i % Mod; } public static long perm(long n, long r) { if (n < 0 || r < 0 || r > n) return 0; if (facts != null && facts.Length > n) return facts[n] * invs[n - r] % Mod; long numer = 1; for (long i = 0; i < r; i++) { numer = numer * ((n - i) % Mod) % Mod; } return numer; } public static long comb(long n, long r) { if (n < 0 || r < 0 || r > n) return 0; if (facts != null && facts.Length > n) return facts[n] * invs[r] % Mod * invs[n - r] % Mod; if (n - r < r) r = n - r; long numer = 1, denom = 1; for (long i = 0; i < r; i++) { numer = numer * ((n - i) % Mod) % Mod; denom = denom * ((i + 1) % Mod) % Mod; } return numer * inv(denom) % Mod; } public static long multi_choose(long n, long r) { return comb(n + r - 1, r); } public static long[][] getcombs(int n) { var ret = new long[n + 1][]; for (int i = 0; i <= n; i++) { ret[i] = new long[i + 1]; ret[i][0] = ret[i][i] = 1; for (int j = 1; j < i; j++) ret[i][j] = (ret[i - 1][j - 1] + ret[i - 1][j]) % Mod; } return ret; } // nC0, nC2, ..., nCn public static long[] getcomb(int n) { var ret = new long[n + 1]; ret[0] = 1; for (int i = 0; i < n; i++) ret[i + 1] = ret[i] * (n - i) % Mod * inv(i + 1) % Mod; return ret; } public static bool nextPermutation<T>(IList<T> p) where T : struct, IComparable<T> { for (int i = p.Count - 2; i >= 0; --i) { if (p[i].CompareTo(p[i + 1]) < 0) { for (int j = p.Count - 1; ; --j) { if (p[j].CompareTo(p[i]) > 0) { p.swap(i, j); for(++i, j = p.Count - 1; i < j; ++i, --j) p.swap(i, j); return true; } } } } return false; } public static bool nextPermutation<T>(IList<T> p, Comparison<T> compare) where T : struct { for (int i = p.Count - 2; i >= 0; --i) { if (compare(p[i], p[i + 1]) < 0) { for (int j = p.Count - 1; ; --j) { if (compare(p[j], p[i]) > 0) { p.swap(i, j); for (++i, j = p.Count - 1; i < j; ++i, --j) p.swap(i, j); return true; } } } } return false; } public static class ModMatrix { public static long[][] E(int n) { var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; } return ret; } public static long[][] pow(long[][] A, long n) { if (n == 0) return E(A.Length); var t = pow(A, n / 2); if ((n & 1) == 0) return mul(t, t); return mul(mul(t, t), A); } public static long dot(long[] x, long[] y) { int n = x.Length; long ret = 0; for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod; return ret; } public static long[][] trans(long[][] A) { int n = A[0].Length, m = A.Length; var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; } return ret; } public static long[] mul(long a, long[] x) { int n = x.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = a * x[i] % Mod; return ret; } public static long[] mul(long[][] A, long[] x) { int n = A.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]); return ret; } public static long[][] mul(long a, long[][] A) { int n = A.Length; var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = mul(a, A[i]); return ret; } public static long[][] mul(long[][] A, long[][] B) { int n = A.Length; var Bt = trans(B); var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]); return ret; } } }