結果
問題 | No.931 Multiplicative Convolution |
ユーザー | risujiroh |
提出日時 | 2019-10-02 04:11:25 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 84 ms / 2,000 ms |
コード長 | 4,754 bytes |
コンパイル時間 | 1,877 ms |
コンパイル使用メモリ | 183,300 KB |
実行使用メモリ | 7,316 KB |
最終ジャッジ日時 | 2024-10-11 02:39:28 |
合計ジャッジ時間 | 4,632 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 17 |
コンパイルメッセージ
main.cpp:11:20: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 11 | constexpr ModInt(auto x) : v(x >= 0 ? x % P : (P - -x % P) % P) {} | ^~~~ main.cpp:38:9: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 38 | M pow(auto n) const { | ^~~~ main.cpp:44:22: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 44 | friend M operator*(auto l, M r) { return M(l) *= r; } | ^~~~ main.cpp:45:22: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 45 | friend M operator/(auto l, M r) { return M(l) /= r; } | ^~~~ main.cpp:46:22: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 46 | friend M operator+(auto l, M r) { return M(l) += r; } | ^~~~ main.cpp:47:22: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 47 | friend M operator-(auto l, M r) { return M(l) -= r; } | ^~~~ main.cpp:50:26: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 50 | friend bool operator==(auto l, M r) { return M(l) == r; } | ^~~~ main.cpp:51:26: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts' 51 | friend bool operator!=(auto l, M r) { return !(l == r); } | ^~~~
ソースコード
#include <bits/stdc++.h>using namespace std;using lint = long long;template<class T = int> using V = vector<T>;template<class T = int> using VV = V< V<T> >;template<unsigned P> struct ModInt {using M = ModInt;unsigned v;constexpr ModInt() : v(0) {}constexpr ModInt(auto x) : v(x >= 0 ? x % P : (P - -x % P) % P) {}constexpr ModInt(unsigned _v, int) : v(_v) {}static constexpr unsigned p() { return P; }M operator+() const { return *this; }M operator-() const { return {v ? P - v : 0, 0}; }explicit operator bool() const noexcept { return v; }bool operator!() const noexcept { return !(bool)*this; }M operator*(M r) const { return M(*this) *= r; }M operator/(M r) const { return M(*this) /= r; }M operator+(M r) const { return M(*this) += r; }M operator-(M r) const { return M(*this) -= r; }bool operator==(M r) const { return v == r.v; }bool operator!=(M r) const { return !(*this == r); }M& operator*=(M r) { v = (uint64_t)v * r.v % P; return *this; }M& operator/=(M r) { return *this *= r.inv(); }M& operator+=(M r) { if ((v += r.v) >= P) v -= P; return *this; }M& operator-=(M r) { if ((v += P - r.v) >= P) v -= P; return *this; }M inv() const {int a = v, b = P, x = 1, u = 0;while (b) {int q = a / b;swap(a -= q * b, b);swap(x -= q * u, u);}assert(a == 1);return x;}M pow(auto n) const {if (n < 0) return pow(-n).inv();M res = 1;for (M a = *this; n; a *= a, n >>= 1) if (n & 1) res *= a;return res;}friend M operator*(auto l, M r) { return M(l) *= r; }friend M operator/(auto l, M r) { return M(l) /= r; }friend M operator+(auto l, M r) { return M(l) += r; }friend M operator-(auto l, M r) { return M(l) -= r; }friend ostream& operator<<(ostream& os, M r) { return os << r.v; }friend istream& operator>>(istream& is, M& r) { lint x; is >> x; r = x; return is; }friend bool operator==(auto l, M r) { return M(l) == r; }friend bool operator!=(auto l, M r) { return !(l == r); }};using Mint = ModInt<998244353>;template<unsigned P, unsigned g> void ntt(V< ModInt<P> >& a, bool inv = false) {int n = a.size();assert(__builtin_popcount(n) == 1);int j = 0;for (int i = 1; i < n; ++i) {int w = n >> 1;while (j >= w) j -= w, w >>= 1;j += w;if (i < j) swap(a[i], a[j]);}assert((P - 1) % n == 0);auto xi = ModInt<P>(g).pow((P - 1) / n);if (inv) xi = xi.inv();for (int k = 0; 1 << k < n; ++k) {const int w = 1 << k;const auto dt = xi.pow(n >> k + 1);for (int s = 0; s < n; s += 2 * w) {ModInt<P> t = 1;for (int i = s; i < s + w; ++i) {auto p = a[i], q = a[i + w] * t;a[i] = p + q, a[i + w] = p - q;t *= dt;}}}}template<unsigned P, unsigned g = 6420> V< ModInt<P> > multiply(const V< ModInt<P> >& a, const V< ModInt<P> >& b) {if (a.empty() or b.empty()) return {};int sz = a.size() + b.size() - 1, n = 1 << __lg(2 * sz - 1);auto _a = a, _b = b;_a.resize(n), _b.resize(n);ntt<P, g>(_a), ntt<P, g>(_b);for (int i = 0; i < n; ++i) _a[i] *= _b[i];ntt<P, g>(_a, true);_a.resize(sz);const auto inv_n = ModInt<P>(n).inv();for (auto&& e : _a) e *= inv_n;return _a;}lint tmod(lint a, lint p) { return (a %= p) < 0 ? a + p : a; }lint mod_pow(lint a, lint n, lint p) {assert(n >= 0);a = tmod(a, p);lint res = 1;while (n) {if (n & 1) (res *= a) %= p;(a *= a) %= p;n >>= 1;}return res;}template<class Z> map<Z, int> factorize(Z n) {map<Z, int> res;for (Z i = 2; i * i <= n; ++i) while (n % i == 0) ++res[i], n /= i;if (n != 1) ++res[n];return res;}template<class Z> Z rng(Z a, Z b) {static mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());return uniform_int_distribution<Z>(a, b - 1)(mt);}lint primitive_root(lint p) {auto mp = factorize(p - 1);while (true) {lint g = rng(1LL, p);bool ok = true;for (const auto& e : mp) {if (mod_pow(g, (p - 1) / e.first, p) == 1) {ok = false;break;}}if (!ok) continue;return g;}}int main() {cin.tie(nullptr); ios::sync_with_stdio(false);lint p; cin >> p;V<Mint> a(p), b(p);for (int i = 1; i < p; ++i) cin >> a[i];for (int i = 1; i < p; ++i) cin >> b[i];lint g = primitive_root(p);V<Mint> na(p - 1), nb(p - 1);lint t = 1;for (int i = 0; i < p - 1; ++i) {na[i] = a[t];nb[i] = b[t];(t *= g) %= p;}auto nc = multiply(na, nb);V<Mint> c(p);t = 1;for (int i = 0; i < (int)nc.size(); ++i) {c[t] += nc[i];(t *= g) %= p;}for (int i = 1; i < p; ++i) {cout << c[i] << " \n"[i == p - 1];}}