結果
| 問題 |
No.899 γatheree
|
| コンテスト | |
| ユーザー |
lumc_
|
| 提出日時 | 2019-10-05 01:53:47 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 176 ms / 2,000 ms |
| コード長 | 12,197 bytes |
| コンパイル時間 | 1,397 ms |
| コンパイル使用メモリ | 125,984 KB |
| 実行使用メモリ | 16,276 KB |
| 最終ジャッジ日時 | 2024-10-04 05:57:38 |
| 合計ジャッジ時間 | 7,195 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 23 |
ソースコード
// includes {{{
#include<iostream>
#include<iomanip>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<tuple>
#include<cmath>
#include<random>
#include<cassert>
#include<bitset>
#include<cstdlib>
// #include<deque>
// #include<multiset>
// #include<cstring>
// #include<bits/stdc++.h>
// }}}
using namespace std;
using ll = long long;
// LazySegmentTree( size [, initial] )
// LazySegmentTree( <data> )
/// --- LazySegmentTree {{{ ///
#include <cassert>
#include <initializer_list>
#include <iostream>
#include <vector>
template < class M_act >
struct LazySegmentTree {
public:
using Monoid = typename M_act::Monoid;
using X = typename Monoid::T;
using M = typename M_act::M;
private:
size_t n;
int h;
vector< X > data;
vector< M > lazy;
vector< size_t > nodeLength;
// call before use data[i]
void eval(size_t i) {
if(lazy[i] == M_act::identity()) return;
data[i] = M_act::actInto(lazy[i], nodeLength[i], data[i]);
if(i < n) {
lazy[i * 2] = M_act::op(lazy[i], lazy[i * 2]);
lazy[i * 2 + 1] = M_act::op(lazy[i], lazy[i * 2 + 1]);
}
lazy[i] = M_act::identity();
}
// call before use seg[i] = data[i + n]
void evalDown(size_t i) {
i += n;
for(int j = h - 1; j >= 0; j--) eval(i >> j);
}
// call after touch seg[i] = data[i + n]
void propUp(size_t i) {
i += n;
while(i >>= 1)
eval(i * 2), eval(i * 2 + 1), data[i] = Monoid::op(data[i * 2], data[i * 2 + 1]);
}
public:
LazySegmentTree() : n(0) {}
LazySegmentTree(size_t n, X initial = Monoid::identity()) : n(n) {
if(n > 0) {
h = 1;
while(1u << h < n) h++;
data.resize(2 * n, initial);
lazy.resize(2 * n, M_act::identity());
nodeLength.resize(2 * n, 1);
for(size_t i = n - 1; i > 0; i--) // fill from deep
data[i] = Monoid::op(data[i * 2], data[i * 2 + 1]),
nodeLength[i] = nodeLength[i * 2] + nodeLength[i * 2 + 1];
}
}
template < class InputIter, class = typename iterator_traits< InputIter >::value_type >
LazySegmentTree(InputIter first, InputIter last)
: LazySegmentTree(distance(first, last)) {
if(n > 0) {
copy(first, last, begin(data) + n);
for(size_t i = n - 1; i > 0; i--) // fill from deep
data[i] = Monoid::op(data[i * 2], data[i * 2 + 1]);
}
}
LazySegmentTree(vector< X > v) : LazySegmentTree(v.begin(), v.end()) {}
LazySegmentTree(initializer_list< X > v) : LazySegmentTree(v.begin(), v.end()) {}
void act(int l, int r, const M &m) {
if(l < 0) l = 0;
if(l >= r) return;
if(r > (int) n) r = n;
evalDown(l);
evalDown(r - 1);
int tl = l, tr = r;
for(l += n, r += n; l < r; l >>= 1, r >>= 1) {
if(l & 1) eval(l), lazy[l] = m, eval(l), l++;
if(r & 1) --r, eval(r), lazy[r] = m, eval(r);
}
propUp(tl);
propUp(tr - 1);
}
void set(size_t i, const X &x) {
assert(i < n);
evalDown(i);
data[i + n] = x;
propUp(i);
}
X get(size_t i) {
assert(i < n);
evalDown(i);
return data[i + n];
}
X fold(int l, int r) {
if(l < 0) l = 0;
if(l >= r) return Monoid::identity();
if(r > (int) n) r = n;
evalDown(l);
evalDown(r - 1);
X tmpL = Monoid::identity(), tmpR = Monoid::identity();
for(l += n, r += n; l < r; l >>= 1, r >>= 1) {
if(l & 1) eval(l), tmpL = Monoid::op(tmpL, data[l]), l++;
if(r & 1) --r, eval(r), tmpR = Monoid::op(data[r], tmpR);
}
return Monoid::op(tmpL, tmpR);
}
int size() { return n; }
inline void dum(int r = -1) {
#ifdef DEBUG
if(r < 0) r = n;
DEBUG_OUT << "{";
for(int i = 0; i < min(r, (int) n); i++) DEBUG_OUT << (i ? ", " : "") << get(i);
DEBUG_OUT << "}" << endl;
#endif
}
};
/// }}}--- ///
/// --- Monoid examples {{{ ///
constexpr long long inf_monoid = 1e18 + 100;
#include <algorithm>
struct Nothing {
using T = char;
using Monoid = Nothing;
using M = T;
static constexpr T op(const T &, const T &) { return T(); }
static constexpr T identity() { return T(); }
template < class X >
static constexpr X actInto(const M &, long long, const X &x) {
return x;
}
};
template < class U = long long >
struct RangeMin {
using T = U;
static T op(const T &a, const T &b) { return std::min< T >(a, b); }
static constexpr T identity() { return T(inf_monoid); }
};
template < class U = long long >
struct RangeMax {
using T = U;
static T op(const T &a, const T &b) { return std::max< T >(a, b); }
static constexpr T identity() { return T(-inf_monoid); }
};
template < class U = long long >
struct RangeSum {
using T = U;
static T op(const T &a, const T &b) { return a + b; }
static constexpr T identity() { return T(0); }
};
template < class U >
struct RangeProd {
using T = U;
static T op(const T &a, const T &b) { return a * b; }
static constexpr T identity() { return T(1); }
};
template < class U = long long >
struct RangeOr {
using T = U;
static T op(const T &a, const T &b) { return a | b; }
static constexpr T identity() { return T(0); }
};
#include <bitset>
template < class U = long long >
struct RangeAnd {
using T = U;
static T op(const T &a, const T &b) { return a & b; }
static constexpr T identity() { return T(-1); }
};
template < size_t N >
struct RangeAnd< std::bitset< N > > {
using T = std::bitset< N >;
static T op(const T &a, const T &b) { return a & b; }
static constexpr T identity() { return std::bitset< N >().set(); }
};
/// }}}--- ///
/// --- M_act examples {{{ ///
template < class U = long long, class V = U >
struct RangeMinAdd {
using X = U;
using M = V;
using Monoid = RangeMin< U >;
static M op(const M &a, const M &b) { return a + b; }
static constexpr M identity() { return 0; }
static X actInto(const M &m, long long, const X &x) { return m + x; }
};
template < class U = long long, class V = U >
struct RangeMaxAdd {
using X = U;
using M = V;
using Monoid = RangeMax< U >;
static M op(const M &a, const M &b) { return a + b; }
static constexpr M identity() { return 0; }
static X actInto(const M &m, long long, const X &x) { return m + x; }
};
template < class U = long long, class V = U >
struct RangeMinSet {
using M = U;
using Monoid = RangeMin< U >;
using X = typename Monoid::T;
static M op(const M &a, const M &b) { return a == identity() ? b : a; }
static constexpr M identity() { return M(-inf_monoid); }
static X actInto(const M &m, long long, const X &x) { return m == identity() ? x : m; }
};
template < class U = long long, class V = U >
struct RangeMaxSet {
using M = U;
using Monoid = RangeMax< U >;
using X = typename Monoid::T;
static M op(const M &a, const M &b) { return a == identity() ? b : a; }
static constexpr M identity() { return M(-inf_monoid); }
static X actInto(const M &m, long long, const X &x) { return m == identity() ? x : m; }
};
template < class U = long long, class V = U >
struct RangeSumAdd {
using X = U;
using M = V;
using Monoid = RangeSum< U >;
static M op(const M &a, const M &b) { return a + b; }
static constexpr M identity() { return 0; }
static X actInto(const M &m, long long n, const X &x) { return m * n + x; }
};
template < class U = long long, class V = U >
struct RangeSumSet {
using X = U;
using M = V;
using Monoid = RangeSum< U >;
static M op(const M &a, const M &b) { return a == identity() ? b : a; }
static constexpr M identity() { return M(-inf_monoid); }
static X actInto(const M &m, long long n, const X &x) {
return m == identity() ? x : m * n;
}
};
template < class U, class V = U >
struct RangeProdMul {
using X = U;
using M = V;
using Monoid = RangeProd< U >;
static M mpow(M a, long long b) {
X r(1);
while(b) {
if(b & 1) r = r * a;
a = a * a;
b >>= 1;
}
return r;
}
static M op(const M &a, const M &b) { return a * b; }
static constexpr M identity() { return M(1); }
static X actInto(const M &m, long long n, const X &x) { return x * mpow(m, n); }
};
template < class U, class V = U >
struct RangeProdSet {
using X = U;
using M = V;
using Monoid = RangeProd< U >;
static M op(const M &a, const M &b) { return a == identity() ? b : a; }
static constexpr M identity() { return V::unused; }
static X actInto(const M &m, long long n, const X &) {
if(m == identity()) return;
return RangeProdMul< U, V >::mpow(m, n);
}
};
template < class U = long long, class V = U >
struct RangeOrSet {
using X = U;
using M = V;
using Monoid = RangeOr< U >;
static M op(const M &a, const M &b) { return a == identity() ? b : a; }
static constexpr M identity() { return M(-inf_monoid); }
static X actInto(const M &m, long long, const X &x) { return m == identity() ? x : m; }
};
template < class U = long long, class V = U >
struct RangeAndSet {
using X = U;
using M = V;
using Monoid = RangeAnd< U >;
static M op(const M &a, const M &b) { return a == identity() ? b : a; }
static constexpr M identity() { return M(-inf_monoid); }
static X actInto(const M &m, long long, const X &x) { return m == identity() ? x : m; }
};
template < class U = long long, class V = U >
struct RangeOr2 {
using X = U;
using M = V;
using Monoid = RangeOr< U >;
static M op(const M &a, const M &b) { return a | b; }
static constexpr M identity() { return M(0); }
static X actInto(const M &m, long long, const X &x) { return m | x; }
};
template < class U = long long, class V = U >
struct RangeAnd2 {
using X = U;
using M = V;
using Monoid = RangeAnd< U >;
static M op(const M &a, const M &b) { return a & b; }
static constexpr M identity() { return M(-1); }
static X actInto(const M &m, long long, const X &x) { return m & x; }
};
template < class U, size_t N >
struct RangeAnd2< U, std::bitset< N > > {
using X = U;
using M = std::bitset< N >;
using Monoid = RangeAnd< U >;
static M op(const M &a, const M &b) { return a & b; }
static constexpr M identity() { return std::bitset< N >().set(); }
static X actInto(const M &m, long long, const X &x) { return m & x; }
};
/// }}}--- ///
using Seg = LazySegmentTree< RangeSumSet<> >;
const int N = 1e5 + 1;
std::vector<std::vector<int>> g;
int n;
int dep[N], par[N];
int L[N], R[N];
int LL[N], RR[N];
int in[N];
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0);
cin >> n;
g.resize(n);
for(int i = 0; i < n - 1; i++) {
int a, b; std::cin >> a >> b;
g[a].emplace_back(b);
g[b].emplace_back(a);
}
// bfs
// like euler tour
par[n] = n;
{
queue<int> q;
q.push(0);
vector<int> used(n);
used[0] = 1;
dep[0] = 0;
par[0] = n;
int id = 0;
while(q.size()) {
int i = q.front();
q.pop();
in[i] = id++;
L[i] = -1;
for(auto j : g[i]) if(used[j] == 0) {
if(L[i] == -1) L[i] = j;
R[i] = j;
used[j] = 1;
q.push(j);
dep[j] = dep[i] + 1;
par[j] = i;
}
}
}
Seg seg(n);
for(int i = 0; i < n; i++) {
int a;
cin >> a;
seg.set(in[i], a);
LL[i] = -1;
for(auto j : g[i]) if(par[i] != j) {
if(LL[i] == -1) LL[i] = L[j];
if(L[j] != -1) RR[i] = R[j];
}
}
int q;
cin >> q;
for(int i = 0; i < q; i++) {
int x;
cin >> x;
ll ans = 0;
if(L[x] != -1) {
// 1個下
ans += seg.fold(in[L[x]], in[R[x]] + 1);
seg.act(in[L[x]], in[R[x]] + 1, 0);
if(LL[x] != -1) {
// 2個下
ans += seg.fold(in[LL[x]], in[RR[x]] + 1);
seg.act(in[LL[x]], in[RR[x]] + 1, 0);
}
}
if(par[x] != n) {
// 親
ans += seg.get(in[par[x]]);
seg.set(in[par[x]], 0);
if(L[par[x]] != -1) {
// 親 の 子すべて
ans += seg.fold(in[L[par[x]]], in[R[par[x]]] + 1);
seg.act(in[L[par[x]]], in[R[par[x]]] + 1, 0);
}
if(par[par[x]] != n) {
// 親 の 親
ans += seg.get(in[par[par[x]]]);
seg.set(in[par[par[x]]], 0);
}
} else {
ans += seg.get(in[x]);
seg.set(in[x], 0);
}
seg.set(in[x], ans);
seg.dum();
cout << ans << "\n";
}
return 0;
}
lumc_