結果
| 問題 |
No.899 γatheree
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2019-10-05 18:05:30 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 18,709 bytes |
| コンパイル時間 | 2,052 ms |
| コンパイル使用メモリ | 153,196 KB |
| 実行使用メモリ | 15,360 KB |
| 最終ジャッジ日時 | 2024-10-06 16:34:57 |
| 合計ジャッジ時間 | 13,279 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | WA * 23 |
ソースコード
#ifdef stderr_path
#define LOCAL
#endif
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#else
#pragma GCC optimize("Ofast")
#endif
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
// #define NDEBUG
#define debug_stream std::cerr
#define iostream_untie true
#define __precision__ 10
#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define __odd(n) ((n)&1)
#define __even(n) (not __odd(n))
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
using i64 = int_fast64_t;
using pii = std::pair<int, int>;
using pll = std::pair<int_fast64_t, int_fast64_t>;
template <class T>
using heap = std::priority_queue<T>;
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
constexpr T inf = std::numeric_limits<T>::max() / T(2) - T(1123456);
namespace execution
{
std::chrono::system_clock::time_point start_time, end_time;
void print_elapsed_time()
{
end_time = std::chrono::system_clock::now();
std::cerr << "\n----- Exec time : ";
std::cerr << std::chrono::duration_cast<std::chrono::milliseconds>(
end_time - start_time)
.count();
std::cerr << " ms -----\n\n";
}
struct setupper
{
setupper()
{
if(iostream_untie)
{
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
}
std::cout << std::fixed << std::setprecision(__precision__);
#ifdef stderr_path
if(freopen(stderr_path, "a", stderr))
{
std::cerr << std::fixed << std::setprecision(__precision__);
}
#endif
#ifdef stdout_path
if(not freopen(stdout_path, "w", stdout))
{
freopen("CON", "w", stdout);
std::cerr << "Failed to open the stdout file\n\n";
}
std::cout << "";
#endif
#ifdef stdin_path
if(not freopen(stdin_path, "r", stdin))
{
freopen("CON", "r", stdin);
std::cerr << "Failed to open the stdin file\n\n";
}
#endif
#ifdef LOCAL
std::cerr << "----- stderr at LOCAL -----\n\n";
atexit(print_elapsed_time);
start_time = std::chrono::system_clock::now();
#else
fclose(stderr);
#endif
}
} __setupper;
} // namespace execution
class myclock_t
{
std::chrono::system_clock::time_point built_pt, last_pt;
int built_ln, last_ln;
std::string built_func, last_func;
bool is_built;
public:
explicit myclock_t() : is_built(false)
{
}
void build(int crt_ln, const std::string &crt_func)
{
is_built = true;
last_pt = built_pt = std::chrono::system_clock::now();
last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
}
void set(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
last_pt = std::chrono::system_clock::now();
last_ln = crt_ln, last_func = crt_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
<< "myclock_t::set failed (yet to be built!)\n";
}
}
void get(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
std::chrono::system_clock::time_point crt_pt(
std::chrono::system_clock::now());
int64_t diff =
std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt -
last_pt)
.count();
debug_stream << diff << " ms elapsed from"
<< " [ " << last_ln << " : " << last_func << " ]";
if(last_ln == built_ln) debug_stream << " (when built)";
debug_stream << " to"
<< " [ " << crt_ln << " : " << crt_func << " ]"
<< "\n";
last_pt = built_pt, last_ln = built_ln, last_func = built_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
<< "myclock_t::get failed (yet to be built!)\n";
}
}
};
#ifdef LOCAL
myclock_t __myclock;
#define build_clock() __myclock.build(__LINE__, __func__)
#define set_clock() __myclock.set(__LINE__, __func__)
#define get_clock() __myclock.get(__LINE__, __func__)
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif
namespace std
{
template <class RAitr>
void rsort(RAitr __first, RAitr __last)
{
sort(__first, __last, greater<>());
}
template <class T>
size_t hash_combine(size_t seed, T const &key)
{
return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2));
}
template <class T, class U>
struct hash<pair<T, U>>
{
size_t operator()(pair<T, U> const &pr) const
{
return hash_combine(hash_combine(0, pr.first), pr.second);
}
};
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1>
struct tuple_hash_calc
{
static size_t apply(size_t seed, tuple_t const &t)
{
return hash_combine(
tuple_hash_calc<tuple_t, index - 1>::apply(seed, t),
get<index>(t));
}
};
template <class tuple_t>
struct tuple_hash_calc<tuple_t, 0>
{
static size_t apply(size_t seed, tuple_t const &t)
{
return hash_combine(seed, get<0>(t));
}
};
template <class... T>
struct hash<tuple<T...>>
{
size_t operator()(tuple<T...> const &t) const
{
return tuple_hash_calc<tuple<T...>>::apply(0, t);
}
};
template <class T, class U>
istream &operator>>(std::istream &s, pair<T, U> &p)
{
return s >> p.first >> p.second;
}
template <class T, class U>
ostream &operator<<(std::ostream &s, const pair<T, U> p)
{
return s << p.first << " " << p.second;
}
template <class T>
istream &operator>>(istream &s, vector<T> &v)
{
for(T &e : v)
{
s >> e;
}
return s;
}
template <class T>
ostream &operator<<(ostream &s, const vector<T> &v)
{
bool is_front = true;
for(const T &e : v)
{
if(not is_front)
{
s << ' ';
}
else
{
is_front = false;
}
s << e;
}
return s;
}
template <class tuple_t, size_t index>
struct tupleos
{
static ostream &apply(ostream &s, const tuple_t &t)
{
tupleos<tuple_t, index - 1>::apply(s, t);
return s << " " << get<index>(t);
}
};
template <class tuple_t>
struct tupleos<tuple_t, 0>
{
static ostream &apply(ostream &s, const tuple_t &t)
{
return s << get<0>(t);
}
};
template <class... T>
ostream &operator<<(ostream &s, const tuple<T...> &t)
{
return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(
s, t);
}
template <>
ostream &operator<<(ostream &s, const tuple<> &t)
{
return s;
}
string revstr(string str)
{
reverse(str.begin(), str.end());
return str;
}
} // namespace std
#ifdef LOCAL
#define dump(...) \
debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \
dump_func(#__VA_ARGS__, __VA_ARGS__)
template <class T>
void dump_func(const char *ptr, const T &x)
{
debug_stream << '\t';
for(char c = *ptr; c != '\0'; c = *++ptr)
{
if(c != ' ') debug_stream << c;
}
debug_stream << " : " << x << '\n';
}
template <class T, class... rest_t>
void dump_func(const char *ptr, const T &x, rest_t... rest)
{
debug_stream << '\t';
for(char c = *ptr; c != ','; c = *++ptr)
{
if(c != ' ') debug_stream << c;
}
debug_stream << " : " << x << ",\n";
dump_func(++ptr, rest...);
}
#else
#define dump(...) ((void)0)
#endif
template <class P>
void read_range(P __first, P __second)
{
for(P i = __first; i != __second; ++i)
std::cin >> *i;
}
template <class P>
void write_range(P __first, P __second)
{
for(P i = __first; i != __second;
std::cout << (++i == __second ? '\n' : ' '))
{
std::cout << *i;
}
}
// substitute y for x.
template <class T>
void subst(T &x, const T &y)
{
x = y;
}
// substitue y for x iff x > y.
template <class T>
bool chmin(T &x, const T &y)
{
return x > y ? x = y, true : false;
}
// substitue y for x iff x < y.
template <class T>
bool chmax(T &x, const T &y)
{
return x < y ? x = y, true : false;
}
template <class T>
constexpr T minf(const T &x, const T &y)
{
return std::min(x, y);
}
template <class T>
constexpr T maxf(const T &x, const T &y)
{
return std::max(x, y);
}
// binary search.
template <class int_t, class F>
int_t bin(int_t ok, int_t ng, const F &f)
{
while(std::abs(ok - ng) > 1)
{
int_t mid = (ok + ng) / 2;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
// be careful that val is type-sensitive.
template <class T, class A, size_t N>
void init(A (&array)[N], const T &val)
{
std::fill((T *)array, (T *)(array + N), val);
}
void reset()
{
}
template <class A, class... rest_t>
void reset(A &array, rest_t... rest)
{
memset(array, 0, sizeof(array));
reset(rest...);
}
// a integer uniformly and randomly chosen from the interval [l, r).
template <typename int_t>
int_t rand_int(int_t l, int_t r)
{
static std::random_device seed_gen;
static std::mt19937 engine(seed_gen());
std::uniform_int_distribution<int_t> unid(l, r - 1);
return unid(engine);
}
// a real number uniformly and randomly chosen from the interval [l, r).
template <typename real_t>
real_t rand_real(real_t l, real_t r)
{
static std::random_device seed_gen;
static std::mt19937 engine(seed_gen());
std::uniform_real_distribution<real_t> unid(l, r);
return unid(engine);
}
/* The main code follows. */
template <class Monoid, class act_t>
class Lazy_segment_tree
{
std::vector<Monoid> data;
std::vector<act_t> lazy;
std::vector<bool> lazyflag;
public:
const size_t n, N;
using opr_t = std::function<Monoid(const Monoid &, const Monoid &)>;
using lazy_opr_t = std::function<void(act_t &, const act_t &, size_t)>;
using update_opr_t = std::function<void(Monoid &, const act_t &, size_t)>;
const opr_t opr;
const lazy_opr_t lazy_opr;
const update_opr_t update_opr;
const Monoid identity;
const act_t lazy_identity;
explicit Lazy_segment_tree(size_t _n, const Monoid &_identity,
const act_t &_lazy_identity, const opr_t &_opr,
const lazy_opr_t &_lazy_opr,
const update_opr_t &_update_opr)
: n(_n), N(n > 1 ? 1 << (32 - __builtin_clz(n - 1)) : 1), opr(_opr),
lazy_opr(_lazy_opr), update_opr(_update_opr), identity(_identity),
lazy_identity(_lazy_identity)
{
data.assign(N << 1, identity);
lazy.assign(N << 1, lazy_identity);
lazyflag.assign(N << 1, false);
}
Monoid operator[](size_t i)
{
return query(i, i + 1);
}
template <class P>
void build(P s, P t)
{
for(size_t i = N; s != t; ++s, ++i)
data[i] = *s;
for(size_t i = N - 1; i; --i)
data[i] = opr(data[left(i)], data[right(i)]);
}
template <class A>
void build(A &v)
{
build(std::begin(v), std::end(v));
}
void init(const Monoid &x)
{
for(size_t i = 0; i < N; ++i)
data[i + N] = x;
for(size_t i = N - 1; i; --i)
data[i] = opr(data[left(i)], data[right(i)]);
}
void update(size_t a, const act_t &actor)
{
update(a, a + 1, actor);
}
void update(size_t a, size_t b, const act_t &actor)
{
update(a, b, actor, 1, 0, N);
}
Monoid query(size_t a, size_t b)
{
return query(a, b, 1, 0, N);
}
size_t right_bound(size_t idx, const std::function<bool(const Monoid &)> &f)
{
assert(idx < n);
size_t ret = idx;
Monoid now = identity;
right_bound(idx, f, 1, 0, N, now, ret);
return std::min(ret, n);
}
size_t left_bound(size_t idx, const std::function<bool(const Monoid &)> &f)
{
assert(idx <= n);
size_t ret = idx;
Monoid now = identity;
left_bound(idx, f, 1, 0, N, now, ret);
return ret;
}
private:
constexpr size_t left(const size_t k)
{
return k * 2;
}
constexpr size_t right(const size_t k)
{
return left(k) ^ 1;
}
constexpr size_t parent(const size_t k)
{
return k >> 1;
}
constexpr size_t sibling(const size_t k)
{
return k ^ 1;
}
void eval(size_t k, size_t l, size_t r)
{
if(!lazyflag[k]) return;
update_opr(data[k], lazy[k], r - l);
if(r - l > 1)
{
lazy_opr(lazy[left(k)], lazy[k], (r - l) / 2);
lazy_opr(lazy[right(k)], lazy[k], (r - l) / 2);
lazyflag[left(k)] = lazyflag[right(k)] = true;
}
lazy[k] = lazy_identity;
lazyflag[k] = false;
}
void update(size_t a, size_t b, const act_t &actor, size_t k, size_t l,
size_t r)
{
eval(k, l, r);
if(b <= l || r <= a) return;
if(a <= l && r <= b)
{
lazy_opr(lazy[k], actor, r - l);
lazyflag[k] = true;
eval(k, l, r);
}
else
{
update(a, b, actor, left(k), l, (l + r) / 2);
update(a, b, actor, right(k), (l + r) / 2, r);
data[k] = opr(data[left(k)], data[right(k)]);
}
}
Monoid query(size_t a, size_t b, size_t k, size_t l, size_t r)
{
if(b <= l || r <= a) return identity;
eval(k, l, r);
if(a <= l && r <= b) return data[k];
return opr(query(a, b, left(k), l, (l + r) / 2),
query(a, b, right(k), (l + r) / 2, r));
}
void right_bound(size_t idx, const std::function<bool(const Monoid &)> &f,
size_t k, size_t l, size_t r, Monoid &now, size_t &pos)
{
if(idx >= r || l > pos) return;
eval(k, l, r);
const size_t mid = (l + r) / 2;
if(l >= idx)
{
Monoid nxt = opr(now, data[k]);
if(f(nxt))
{
pos = r;
now = nxt;
return;
}
}
if(r - l > 1)
{
right_bound(idx, f, left(k), l, mid, now, pos);
right_bound(idx, f, right(k), mid, r, now, pos);
}
}
void left_bound(size_t idx, const std::function<bool(const Monoid &)> &f,
size_t k, size_t l, size_t r, Monoid &now, size_t &pos)
{
if(idx <= l || r < pos) return;
eval(k, l, r);
const size_t mid = (l + r) / 2;
if(r <= idx)
{
Monoid nxt = opr(data[k], now);
if(f(nxt))
{
pos = l;
now = nxt;
return;
}
}
if(r - l > 1)
{
left_bound(idx, f, right(k), mid, r, now, pos);
left_bound(idx, f, left(k), l, mid, now, pos);
}
}
};
using namespace std;
// using namespace math;
signed main()
{
void __solve();
void __precalc();
unsigned int t = 1;
// cin >> t;
// __precalc();
#ifdef LOCAL
t = 1;
#endif
while(t--)
{
__solve();
}
}
void __solve()
{
int n;
cin >> n;
vector<vector<int>> g(n);
for(int i = 0; i < n - 1; ++i)
{
int a, b;
cin >> a >> b;
g[a].emplace_back(b);
g[b].emplace_back(a);
}
const int root = 0;
vector<int> par(n);
vector<int> l(n), r(n), k(n);
{
int s = 0, t = 0;
int que[1 << 17];
par[root] = -1;
que[t++] = root;
k[root] = 0;
for(int cnt = 1; s < t;)
{
int v = que[s++];
l[v]=cnt;
for(int u : g[v])
{
if(par[v] != u)
{
que[t++] = u;
par[u] = v;
k[u]=cnt;
cnt++;
}
}
r[v]=cnt;
}
}
Lazy_segment_tree<i64,i64> lsg(n,0,0,plus<i64>(),[](i64 &x,i64 y,size_t w){x=y;},[](i64 &x,i64 y,size_t w){x=y*w;});
{
vector<int> iniv(n);
for(int i = 0; i < n; ++i)
{
int a; cin>>a;
iniv[k[i]]=a;
}
lsg.build(iniv);
}
auto self=[&](int v)
{
i64 ret=lsg[k[v]];
lsg.update(k[v],k[v]+1,0);
return ret;
};
auto chi=[&](int v)
{
if(not r[v])
{
return i64(0);
}
i64 ret=lsg.query(l[v],r[v]);
lsg.update(l[v],r[v],0);
return ret;
};
auto cchi=[&](int v)->i64
{
if(not r[v])
{
return 0;
}
int ll=l[l[v]];
int rr=r[r[v]-1];
if(not rr)
{
return 0;
}
i64 ret=lsg.query(ll,rr);
lsg.update(ll,rr,0);
return ret;
};
int Q;
cin >> Q;
for(int q = 0; q < Q; ++q)
{
int x;
cin >> x;
i64 ans=0;
if(~par[x])
{
ans=chi(par[x]);
ans+=self(par[x]);
if(~par[par[x]])
{
ans+=self(par[par[x]]);
}
}
else
{
ans=self(x);
}
ans+=chi(x);
ans+=cchi(x);
std::cout << ans << "\n";
lsg.update(k[x],ans);
}
}
jell