結果

問題 No.899 γatheree
ユーザー jelljell
提出日時 2019-10-06 15:43:29
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 572 ms / 2,000 ms
コード長 18,725 bytes
コンパイル時間 2,377 ms
コンパイル使用メモリ 153,772 KB
実行使用メモリ 15,360 KB
最終ジャッジ日時 2024-10-10 03:47:00
合計ジャッジ時間 14,044 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 3 ms
6,816 KB
testcase_04 AC 2 ms
6,824 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 545 ms
15,232 KB
testcase_07 AC 572 ms
15,232 KB
testcase_08 AC 534 ms
15,232 KB
testcase_09 AC 520 ms
15,232 KB
testcase_10 AC 525 ms
15,264 KB
testcase_11 AC 522 ms
15,332 KB
testcase_12 AC 517 ms
15,332 KB
testcase_13 AC 521 ms
15,232 KB
testcase_14 AC 521 ms
15,188 KB
testcase_15 AC 520 ms
15,232 KB
testcase_16 AC 525 ms
15,232 KB
testcase_17 AC 509 ms
15,232 KB
testcase_18 AC 539 ms
15,360 KB
testcase_19 AC 529 ms
15,360 KB
testcase_20 AC 526 ms
15,164 KB
testcase_21 AC 554 ms
15,232 KB
testcase_22 AC 556 ms
15,228 KB
testcase_23 AC 555 ms
15,356 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef stderr_path
#define LOCAL
#endif
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#else
#pragma GCC optimize("Ofast")
#endif
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>

// #define NDEBUG
#define debug_stream std::cerr
#define iostream_untie true
#define __precision__ 10

#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define __odd(n) ((n)&1)
#define __even(n) (not __odd(n))
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)

using i64 = int_fast64_t;
using pii = std::pair<int, int>;
using pll = std::pair<int_fast64_t, int_fast64_t>;
template <class T>
using heap = std::priority_queue<T>;
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
constexpr T inf = std::numeric_limits<T>::max() / T(2) - T(1123456);

namespace execution
{
    std::chrono::system_clock::time_point start_time, end_time;
    void print_elapsed_time()
    {
        end_time = std::chrono::system_clock::now();
        std::cerr << "\n----- Exec time : ";
        std::cerr << std::chrono::duration_cast<std::chrono::milliseconds>(
                         end_time - start_time)
                         .count();
        std::cerr << " ms -----\n\n";
    }
    struct setupper
    {
        setupper()
        {
            if(iostream_untie)
            {
                std::ios::sync_with_stdio(false);
                std::cin.tie(nullptr);
            }
            std::cout << std::fixed << std::setprecision(__precision__);
#ifdef stderr_path
            if(freopen(stderr_path, "a", stderr))
            {
                std::cerr << std::fixed << std::setprecision(__precision__);
            }
#endif
#ifdef stdout_path
            if(not freopen(stdout_path, "w", stdout))
            {
                freopen("CON", "w", stdout);
                std::cerr << "Failed to open the stdout file\n\n";
            }
            std::cout << "";
#endif
#ifdef stdin_path
            if(not freopen(stdin_path, "r", stdin))
            {
                freopen("CON", "r", stdin);
                std::cerr << "Failed to open the stdin file\n\n";
            }
#endif
#ifdef LOCAL
            std::cerr << "----- stderr at LOCAL -----\n\n";
            atexit(print_elapsed_time);
            start_time = std::chrono::system_clock::now();
#else
            fclose(stderr);
#endif
        }
    } __setupper;
} // namespace execution

class myclock_t
{
    std::chrono::system_clock::time_point built_pt, last_pt;
    int built_ln, last_ln;
    std::string built_func, last_func;
    bool is_built;

  public:
    explicit myclock_t() : is_built(false)
    {
    }
    void build(int crt_ln, const std::string &crt_func)
    {
        is_built = true;
        last_pt = built_pt = std::chrono::system_clock::now();
        last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
    }
    void set(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            last_pt = std::chrono::system_clock::now();
            last_ln = crt_ln, last_func = crt_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
                         << "myclock_t::set failed (yet to be built!)\n";
        }
    }
    void get(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            std::chrono::system_clock::time_point crt_pt(
                std::chrono::system_clock::now());
            int64_t diff =
                std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt -
                                                                      last_pt)
                    .count();
            debug_stream << diff << " ms elapsed from"
                         << " [ " << last_ln << " : " << last_func << " ]";
            if(last_ln == built_ln) debug_stream << " (when built)";
            debug_stream << " to"
                         << " [ " << crt_ln << " : " << crt_func << " ]"
                         << "\n";
            last_pt = built_pt, last_ln = built_ln, last_func = built_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
                         << "myclock_t::get failed (yet to be built!)\n";
        }
    }
};
#ifdef LOCAL
myclock_t __myclock;
#define build_clock() __myclock.build(__LINE__, __func__)
#define set_clock() __myclock.set(__LINE__, __func__)
#define get_clock() __myclock.get(__LINE__, __func__)
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif

namespace std
{
    template <class RAitr>
    void rsort(RAitr __first, RAitr __last)
    {
        sort(__first, __last, greater<>());
    }
    template <class T>
    size_t hash_combine(size_t seed, T const &key)
    {
        return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2));
    }
    template <class T, class U>
    struct hash<pair<T, U>>
    {
        size_t operator()(pair<T, U> const &pr) const
        {
            return hash_combine(hash_combine(0, pr.first), pr.second);
        }
    };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1>
    struct tuple_hash_calc
    {
        static size_t apply(size_t seed, tuple_t const &t)
        {
            return hash_combine(
                tuple_hash_calc<tuple_t, index - 1>::apply(seed, t),
                get<index>(t));
        }
    };
    template <class tuple_t>
    struct tuple_hash_calc<tuple_t, 0>
    {
        static size_t apply(size_t seed, tuple_t const &t)
        {
            return hash_combine(seed, get<0>(t));
        }
    };
    template <class... T>
    struct hash<tuple<T...>>
    {
        size_t operator()(tuple<T...> const &t) const
        {
            return tuple_hash_calc<tuple<T...>>::apply(0, t);
        }
    };
    template <class T, class U>
    istream &operator>>(std::istream &s, pair<T, U> &p)
    {
        return s >> p.first >> p.second;
    }
    template <class T, class U>
    ostream &operator<<(std::ostream &s, const pair<T, U> p)
    {
        return s << p.first << " " << p.second;
    }
    template <class T>
    istream &operator>>(istream &s, vector<T> &v)
    {
        for(T &e : v)
        {
            s >> e;
        }
        return s;
    }
    template <class T>
    ostream &operator<<(ostream &s, const vector<T> &v)
    {
        bool is_front = true;
        for(const T &e : v)
        {
            if(not is_front)
            {
                s << ' ';
            }
            else
            {
                is_front = false;
            }
            s << e;
        }
        return s;
    }
    template <class tuple_t, size_t index>
    struct tupleos
    {
        static ostream &apply(ostream &s, const tuple_t &t)
        {
            tupleos<tuple_t, index - 1>::apply(s, t);
            return s << " " << get<index>(t);
        }
    };
    template <class tuple_t>
    struct tupleos<tuple_t, 0>
    {
        static ostream &apply(ostream &s, const tuple_t &t)
        {
            return s << get<0>(t);
        }
    };
    template <class... T>
    ostream &operator<<(ostream &s, const tuple<T...> &t)
    {
        return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(
            s, t);
    }
    template <>
    ostream &operator<<(ostream &s, const tuple<> &t)
    {
        return s;
    }
    string revstr(string str)
    {
        reverse(str.begin(), str.end());
        return str;
    }
} // namespace std

#ifdef LOCAL
#define dump(...)                                                              \
    debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n",       \
        dump_func(#__VA_ARGS__, __VA_ARGS__)
template <class T>
void dump_func(const char *ptr, const T &x)
{
    debug_stream << '\t';
    for(char c = *ptr; c != '\0'; c = *++ptr)
    {
        if(c != ' ') debug_stream << c;
    }
    debug_stream << " : " << x << '\n';
}
template <class T, class... rest_t>
void dump_func(const char *ptr, const T &x, rest_t... rest)
{
    debug_stream << '\t';
    for(char c = *ptr; c != ','; c = *++ptr)
    {
        if(c != ' ') debug_stream << c;
    }
    debug_stream << " : " << x << ",\n";
    dump_func(++ptr, rest...);
}
#else
#define dump(...) ((void)0)
#endif
template <class P>
void read_range(P __first, P __second)
{
    for(P i = __first; i != __second; ++i)
        std::cin >> *i;
}
template <class P>
void write_range(P __first, P __second)
{
    for(P i = __first; i != __second;
        std::cout << (++i == __second ? '\n' : ' '))
    {
        std::cout << *i;
    }
}

// substitute y for x.
template <class T>
void subst(T &x, const T &y)
{
    x = y;
}
// substitue y for x iff x > y.
template <class T>
bool chmin(T &x, const T &y)
{
    return x > y ? x = y, true : false;
}
// substitue y for x iff x < y.
template <class T>
bool chmax(T &x, const T &y)
{
    return x < y ? x = y, true : false;
}
template <class T>
constexpr T minf(const T &x, const T &y)
{
    return std::min(x, y);
}
template <class T>
constexpr T maxf(const T &x, const T &y)
{
    return std::max(x, y);
}
// binary search.
template <class int_t, class F>
int_t bin(int_t ok, int_t ng, const F &f)
{
    while(std::abs(ok - ng) > 1)
    {
        int_t mid = (ok + ng) / 2;
        (f(mid) ? ok : ng) = mid;
    }
    return ok;
}
// be careful that val is type-sensitive.
template <class T, class A, size_t N>
void init(A (&array)[N], const T &val)
{
    std::fill((T *)array, (T *)(array + N), val);
}
void reset()
{
}
template <class A, class... rest_t>
void reset(A &array, rest_t... rest)
{
    memset(array, 0, sizeof(array));
    reset(rest...);
}
// a integer uniformly and randomly chosen from the interval [l, r).
template <typename int_t>
int_t rand_int(int_t l, int_t r)
{
    static std::random_device seed_gen;
    static std::mt19937 engine(seed_gen());
    std::uniform_int_distribution<int_t> unid(l, r - 1);
    return unid(engine);
}
// a real number uniformly and randomly chosen from the interval [l, r).
template <typename real_t>
real_t rand_real(real_t l, real_t r)
{
    static std::random_device seed_gen;
    static std::mt19937 engine(seed_gen());
    std::uniform_real_distribution<real_t> unid(l, r);
    return unid(engine);
}

/* The main code follows. */

template <class Monoid, class act_t>
class Lazy_segment_tree
{
    std::vector<Monoid> data;
    std::vector<act_t> lazy;
    std::vector<bool> lazyflag;

  public:
    const size_t n, N;

    using opr_t = std::function<Monoid(const Monoid &, const Monoid &)>;
    using lazy_opr_t = std::function<void(act_t &, const act_t &, size_t)>;
    using update_opr_t = std::function<void(Monoid &, const act_t &, size_t)>;
    const opr_t opr;
    const lazy_opr_t lazy_opr;
    const update_opr_t update_opr;
    const Monoid identity;
    const act_t lazy_identity;

    explicit Lazy_segment_tree(size_t _n, const Monoid &_identity,
                               const act_t &_lazy_identity, const opr_t &_opr,
                               const lazy_opr_t &_lazy_opr,
                               const update_opr_t &_update_opr)
        : n(_n), N(n > 1 ? 1 << (32 - __builtin_clz(n - 1)) : 1), opr(_opr),
          lazy_opr(_lazy_opr), update_opr(_update_opr), identity(_identity),
          lazy_identity(_lazy_identity)
    {
        data.assign(N << 1, identity);
        lazy.assign(N << 1, lazy_identity);
        lazyflag.assign(N << 1, false);
    }

    Monoid operator[](size_t i)
    {
        return query(i, i + 1);
    }

    template <class P>
    void build(P s, P t)
    {
        for(size_t i = N; s != t; ++s, ++i)
            data[i] = *s;
        for(size_t i = N - 1; i; --i)
            data[i] = opr(data[left(i)], data[right(i)]);
    }

    template <class A>
    void build(A &v)
    {
        build(std::begin(v), std::end(v));
    }

    void init(const Monoid &x)
    {
        for(size_t i = 0; i < N; ++i)
            data[i + N] = x;
        for(size_t i = N - 1; i; --i)
            data[i] = opr(data[left(i)], data[right(i)]);
    }

    void update(size_t a, const act_t &actor)
    {
        update(a, a + 1, actor);
    }

    void update(size_t a, size_t b, const act_t &actor)
    {
        update(a, b, actor, 1, 0, N);
    }

    Monoid query(size_t a, size_t b)
    {
        return query(a, b, 1, 0, N);
    }

    size_t right_bound(size_t idx, const std::function<bool(const Monoid &)> &f)
    {
        assert(idx < n);
        size_t ret = idx;
        Monoid now = identity;
        right_bound(idx, f, 1, 0, N, now, ret);
        return std::min(ret, n);
    }

    size_t left_bound(size_t idx, const std::function<bool(const Monoid &)> &f)
    {
        assert(idx <= n);
        size_t ret = idx;
        Monoid now = identity;
        left_bound(idx, f, 1, 0, N, now, ret);
        return ret;
    }

  private:
    constexpr size_t left(const size_t k)
    {
        return k * 2;
    }

    constexpr size_t right(const size_t k)
    {
        return left(k) ^ 1;
    }

    constexpr size_t parent(const size_t k)
    {
        return k >> 1;
    }

    constexpr size_t sibling(const size_t k)
    {
        return k ^ 1;
    }

    void eval(size_t k, size_t l, size_t r)
    {
        if(!lazyflag[k]) return;
        update_opr(data[k], lazy[k], r - l);
        if(r - l > 1)
        {
            lazy_opr(lazy[left(k)], lazy[k], (r - l) / 2);
            lazy_opr(lazy[right(k)], lazy[k], (r - l) / 2);
            lazyflag[left(k)] = lazyflag[right(k)] = true;
        }
        lazy[k] = lazy_identity;
        lazyflag[k] = false;
    }

    void update(size_t a, size_t b, const act_t &actor, size_t k, size_t l,
                size_t r)
    {
        eval(k, l, r);
        if(b <= l || r <= a) return;
        if(a <= l && r <= b)
        {
            lazy_opr(lazy[k], actor, r - l);
            lazyflag[k] = true;
            eval(k, l, r);
        }
        else
        {
            update(a, b, actor, left(k), l, (l + r) / 2);
            update(a, b, actor, right(k), (l + r) / 2, r);
            data[k] = opr(data[left(k)], data[right(k)]);
        }
    }

    Monoid query(size_t a, size_t b, size_t k, size_t l, size_t r)
    {
        if(b <= l || r <= a) return identity;
        eval(k, l, r);
        if(a <= l && r <= b) return data[k];
        return opr(query(a, b, left(k), l, (l + r) / 2),
                   query(a, b, right(k), (l + r) / 2, r));
    }

    void right_bound(size_t idx, const std::function<bool(const Monoid &)> &f,
                     size_t k, size_t l, size_t r, Monoid &now, size_t &pos)
    {
        if(idx >= r || l > pos) return;
        eval(k, l, r);
        const size_t mid = (l + r) / 2;
        if(l >= idx)
        {
            Monoid nxt = opr(now, data[k]);
            if(f(nxt))
            {
                pos = r;
                now = nxt;
                return;
            }
        }
        if(r - l > 1)
        {
            right_bound(idx, f, left(k), l, mid, now, pos);
            right_bound(idx, f, right(k), mid, r, now, pos);
        }
    }

    void left_bound(size_t idx, const std::function<bool(const Monoid &)> &f,
                    size_t k, size_t l, size_t r, Monoid &now, size_t &pos)
    {
        if(idx <= l || r < pos) return;
        eval(k, l, r);
        const size_t mid = (l + r) / 2;
        if(r <= idx)
        {
            Monoid nxt = opr(data[k], now);
            if(f(nxt))
            {
                pos = l;
                now = nxt;
                return;
            }
        }
        if(r - l > 1)
        {
            left_bound(idx, f, right(k), mid, r, now, pos);
            left_bound(idx, f, left(k), l, mid, now, pos);
        }
    }
};

using namespace std;
// using namespace math;

signed main()
{
    void __solve();
    void __precalc();

    unsigned int t = 1;
    // cin >> t;
    // __precalc();

#ifdef LOCAL
    t = 1;
#endif

    while(t--)
    {
        __solve();
    }
}

void __solve()
{
    int n;
    cin >> n;
    vector<vector<int>> g(n);
    for(int i = 0; i < n - 1; ++i)
    {
        int a, b;
        cin >> a >> b;
        g[a].emplace_back(b);
        g[b].emplace_back(a);
    }

    const int root = 0;
    vector<int> par(n);
    vector<int> l(n), r(n), k(n);
    {
        int que[1 << 17];
        par[root] = -1;
        que[0] = root;
        k[root] = 0;
        for(int cnt = 1, s = 0, t = 1; s < t;)
        {
            int v = que[s++];
            l[k[v]] = cnt;
            for(int u : g[v])
            {
                if(par[v] != u)
                {
                    que[t++] = u;
                    par[u] = v;
                    k[u] = cnt;
                    cnt++;
                }
            }
            r[k[v]] = cnt;
        }
    }
    dump(l, r, k);
    Lazy_segment_tree<i64, i64> lsg(n, 0, 0, plus<i64>(),
                                    [](i64 &x, i64 y, size_t w) { x = y; },
                                    [](i64 &x, i64 y, size_t w) { x = y * w; });

    {
        vector<int> iniv(n);
        for(int i = 0; i < n; ++i)
        {
            int a;
            cin >> a;
            iniv[k[i]] = a;
        }
        lsg.build(iniv);
    }

    auto self = [&](int v) {
        v = k[v];
        i64 ret = lsg[v];
        lsg.update(v, 0);
        return ret;
    };
    auto chi = [&](int v) {
        v = k[v];
        i64 ret = lsg.query(l[v], r[v]);
        lsg.update(l[v], r[v], 0);
        return ret;
    };
    auto cchi = [&](int v) -> i64 {
        v = k[v];
        if(l[v] == r[v])
        {
            return 0;
        }
        int ll = l[l[v]];
        int rr = r[r[v] - 1];
        i64 ret = lsg.query(ll, rr);
        lsg.update(ll, rr, 0);
        return ret;
    };

    int Q;
    cin >> Q;
    for(int q = 0; q < Q; ++q)
    {
        int x;
        cin >> x;
        i64 ans = self(x);
        if(~par[x])
        {
            ans += chi(par[x]);
            ans += self(par[x]);
            if(~par[par[x]])
            {
                ans += self(par[par[x]]);
            }
        }
        ans += chi(x);
        ans += cchi(x);
        lsg.update(k[x], ans);
        cout << ans << "\n";
    }
}
0