結果

問題 No.899 γatheree
ユーザー ziitaziita
提出日時 2019-10-10 21:44:46
言語 Rust
(1.77.0)
結果
RE  
実行時間 -
コード長 7,312 bytes
コンパイル時間 15,231 ms
コンパイル使用メモリ 380,268 KB
実行使用メモリ 23,380 KB
最終ジャッジ日時 2024-05-01 18:05:30
合計ジャッジ時間 19,920 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 WA -
testcase_23 RE -
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused variable: `l`
  --> src/main.rs:94:19
   |
94 |             (Some(l), Some(r)) => Some(r),
   |                   ^ help: if this is intentional, prefix it with an underscore: `_l`
   |
   = note: `#[warn(unused_variables)]` on by default

warning: variable does not need to be mutable
   --> src/main.rs:124:13
    |
124 |         let mut lazy_data = vec![None; size_p2 * 2];
    |             ----^^^^^^^^^
    |             |
    |             help: remove this `mut`
    |
    = note: `#[warn(unused_mut)]` on by default

ソースコード

diff #

#![allow(unused_imports)]
#![allow(dead_code)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]

use std::cmp::*;
use std::collections::*;
use std::ops::*;
use std::io::{Write, BufWriter};

const MOD: usize = 998244353;

// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
    ($($r:tt)*) => {
        let stdin = std::io::stdin();
        let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
        let mut next = move || -> String{
            bytes
                .by_ref()
                .map(|r|r.unwrap() as char)
                .skip_while(|c|c.is_whitespace())
                .take_while(|c|!c.is_whitespace())
                .collect()
        };
        input_inner!{next, $($r)*}
    };
}

macro_rules! input_inner {
    ($next:expr) => {};
    ($next:expr, ) => {};

    ($next:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($next, $t);
        input_inner!{$next $($r)*}
    };
}

macro_rules! read_value {
    ($next:expr, ( $($t:tt),* )) => {
        ( $(read_value!($next, $t)),* )
    };

    ($next:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
    };

    ($next:expr, chars) => {
        read_value!($next, String).chars().collect::<Vec<char>>()
    };

    ($next:expr, usize1) => {
        read_value!($next, usize) - 1
    };

    ($next:expr, [ $t:tt ]) => {{
        let len = read_value!($next, usize);
        (0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
    }};

    ($next:expr, $t:ty) => {
        $next().parse::<$t>().expect("Parse error")
    };
}

use std::cmp;
use std::marker::PhantomData;

pub trait Monoid<T> {
    fn id() -> Option<T> {
        None
    }
    fn op(l: &Option<T>, r: &Option<T>) -> Option<T>;
    fn lazy_op(l: &Option<T>, r: &Option<T>) -> Option<T>;
}

pub struct MinOp<T: Ord> {
    phantom: PhantomData<T>,
}

impl<T: Ord + Clone + Add<Output=T>> Monoid<T> for MinOp<T> {
    #[inline]
    fn op(l: &Option<T>, r: &Option<T>) -> Option<T> {
        match (l.clone(), r.clone()) {
            (Some(l), Some(r)) => Some(l+r),
            (Some(l), None) => Some(l),
            (None, Some(r)) => Some(r),
            (None, None) => None,
        }
    }
    fn lazy_op(l: &Option<T>, r: &Option<T>) -> Option<T> {
        match (l.clone(), r.clone()) {
            (Some(l), Some(r)) => Some(r),
            (Some(l), None) => Some(l),
            (None, Some(r)) => Some(r),
            (None, None) => None,
        }
    }
}

pub struct SegmentTree<M: Monoid<T>, T: Clone> {
    phantom: PhantomData<M>,
    data: Vec<Option<T>>,
    lazy_data: Vec<Option<T>>,
    size: usize,
    size_p2: usize,
}

impl<M: Monoid<T>, T: Clone> SegmentTree<M, T> {
    pub fn from_vec(v: Vec<T>) -> SegmentTree<M, T> {
        let size = v.len();
        let mut size_p2 = 1;
        while size_p2 < v.len() {
            size_p2 *= 2;
        }
        let mut data = vec![None; size_p2 * 2];
        for (i, x) in v.into_iter().enumerate() {
            data[size_p2 + i] = Some(x);
        }
        for i in (0..size_p2).rev() {
            data[i] = M::op(&data[i * 2 + 0], &data[i * 2 + 1]);
        }
        let mut lazy_data = vec![None; size_p2 * 2];
        SegmentTree {
            phantom: PhantomData,
            data: data,
            lazy_data: lazy_data,
            size: size,
            size_p2: size_p2,
        }
    }

    pub fn size(&self) -> usize {
        self.size
    }

    pub fn eval(&mut self, l: usize, r: usize, k: usize){
        if self.lazy_data[k].is_some() {
            self.data[k] = M::lazy_op(&self.data[k], &self.lazy_data[k]);
            if r-l>1 {
                self.data[2*k+0] = M::lazy_op(&self.data[2*k+0], &self.lazy_data[k]);
                self.data[2*k+1] = M::lazy_op(&self.data[2*k+1], &self.lazy_data[k]);
            }
            self.lazy_data[k] = None;
        }
    }

    pub fn lazy_update(&mut self, a: usize, b: usize, l: usize, r: usize, k: usize, value: T) {
        // assert!(l <= r && r <= self.size);
        self.eval(l,r,k);
        if b<=l || r<=a {return;}
        if a<=l && r<=b {
            self.lazy_data[k] = Some(value);
            self.eval(l,r,k);
        }
        else{
            self.lazy_update(a,b,l,(l+r)/2,2*k+0,value.clone());
            self.lazy_update(a,b,(l+r)/2,r,2*k+1,value.clone());
            self.data[k] = M::op(&self.data[2*k+0], &self.data[2*k+1]);
        }
    }

    pub fn update(&mut self, a: usize, b:usize, value: T){
        self.lazy_update(a,b,0,self.size_p2,1,value);
    }

    pub fn lazy_query(&mut self, a: usize, b: usize, l: usize, r: usize, k: usize) -> Option<T> {
        self.eval(l,r,k);
        if a<=l && r<=b {return self.data[k].clone();}
        if b<=l || r<=a {return None;}
        let res1 = self.lazy_query(a, b, l, (l+r)/2, 2*k+0);
        let res2 = self.lazy_query(a, b, (l+r)/2, r, 2*k+1);
        M::op(&res1, &res2)
    }

    pub fn query(&mut self, l: usize, r: usize) -> Option<T> {
        self.lazy_query(l,r,0,self.size_p2,1)
    }
}

fn solve() {
    input! {
        n: usize,
        uv: [[usize;2];n-1],
        a: [usize; n],
        q: usize,
        x: [usize; q],
    }

    let mut edge = vec![vec![]; n];

    for i in uv {
        let s = i[0];
        let t = i[1];
        edge[s].push(t);
        edge[t].push(s);
    }

    let mut que: VecDeque<[usize;2]> = VecDeque::new();
    que.push_back([0,n+1]);
    let mut seen = vec![false; n];
    let mut tour = vec![];
    let mut L1 = vec![n+1;n];
    let mut R1 = vec![n+1;n];
    let mut L2 = vec![n+1;n];
    let mut R2 = vec![n+1;n];
    let mut P = vec![n+1;n];
    while let Some(node) = que.pop_front() {
        let x = node[0];
        let p = node[1];
        seen[x] = true;
        tour.push(x);
        P[x] = p;
        for &i in &edge[x] {
            if seen[i] {continue;}
            que.push_back([i,x]);
            if L1[x]==n+1 {L1[x]=i};
            R1[x] = i+1;
            let pp = P[x];
            if pp != n+1 {
                if L2[pp]==n+1 {L2[pp]=i;}
                R2[pp]=i+1;
            }
        }
    }
    type RMQ<T> = SegmentTree<MinOp<T>, T>;
    let mut seg = RMQ::from_vec(tour.iter().map(|&x| a[x]).collect::<Vec<_>>());

    for i in x {
        let mut sum = 0;
        if L1[i]!=n+1 {
            sum += seg.query(L1[i],R1[i]).unwrap();
            seg.update(L1[i], R1[i], 0); 
        }
        if L2[i]!=n+1 {
            sum += seg.query(L2[i],R2[i]).unwrap();
            seg.update(L2[i], R2[i], 0); 
        }
        if P[i]!=n+1 {
            sum += seg.query(P[i], P[i]+1).unwrap();
            seg.update(P[i], P[i]+1, 0);
            sum += seg.query(L1[P[i]], R1[P[i]]).unwrap();
            seg.update(L1[P[i]], R1[P[i]], 0);
        }
        if P[i]!=n+1 && P[P[i]]!=n+1 {
            sum += seg.query(P[P[i]], P[P[i]]+1).unwrap();
            seg.update(P[P[i]], P[P[i]]+1, 0);
        }
        seg.update(i,i+1,sum);
        println!("{}", sum);
    }   
}

fn main() {
    // In order to avoid potential stack overflow, spawn a new thread.
    let stack_size = 104_857_600; // 100 MB
    let thd = std::thread::Builder::new().stack_size(stack_size);
    thd.spawn(|| solve()).unwrap().join().unwrap();
}
0