結果
問題 | No.199 星を描こう |
ユーザー | kotatsugame |
提出日時 | 2019-10-14 13:25:13 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 12,234 bytes |
コンパイル時間 | 1,339 ms |
コンパイル使用メモリ | 102,872 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-06 05:02:02 |
合計ジャッジ時間 | 2,413 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 1 ms
6,940 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 1 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 1 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 1 ms
6,944 KB |
testcase_16 | AC | 1 ms
6,940 KB |
testcase_17 | AC | 1 ms
6,944 KB |
testcase_18 | AC | 1 ms
6,944 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 1 ms
6,944 KB |
testcase_21 | AC | 1 ms
6,944 KB |
testcase_22 | AC | 1 ms
6,940 KB |
testcase_23 | AC | 1 ms
6,940 KB |
testcase_24 | AC | 2 ms
6,940 KB |
testcase_25 | AC | 1 ms
6,940 KB |
testcase_26 | AC | 1 ms
6,940 KB |
testcase_27 | AC | 1 ms
6,944 KB |
コンパイルメッセージ
main.cpp:353:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type] 353 | main() | ^~~~
ソースコード
using namespace std; #include<iostream> #include<algorithm> #include<vector> #include<cmath> #include<iomanip> const double EPS=1e-10; bool eq(double a,double b){return abs(a-b)<EPS;} struct Point{ double x,y; Point(double x_=0,double y_=0):x(x_),y(y_){} Point operator-()const{return Point(-x,-y);} Point operator+(const Point&p)const{return Point(x+p.x,y+p.y);} Point operator-(const Point&p)const{return Point(x-p.x,y-p.y);} Point operator*(const double k)const{return Point(x*k,y*k);} Point operator/(const double k)const{return Point(x/k,y/k);} bool operator<(const Point&p)const{return eq(x,p.x)?y<p.y:x<p.x;} bool operator==(const Point&p)const{return eq(x,p.x)&&eq(y,p.y);} }; istream&operator>>(istream&is,Point&p){return is>>p.x>>p.y;} ostream&operator<<(ostream&os,const Point&p){return os<<fixed<<setprecision(9)<<p.x<<' '<<p.y;} struct Line{ Point p1,p2; Line(Point p1_=Point(),Point p2_=Point()):p1(p1_),p2(p2_){} }; struct Segment:Line{ Segment(Point p1_=Point(),Point p2_=Point()):Line(p1_,p2_){} }; struct Circle{ Point o; double r; Circle(Point o_=Point(),double r_=0):o(o_),r(r_){} }; using Polygon=vector<Point>; //function list begin Point vec(const Line&); double norm(const Point&); double norm(const Line&); double abs(const Point&); double abs(const Line&); double arg(const Point&); double arg(const Line&); double arg(const Point&,const Point&,const Point&);//a->b->c double dot(const Point&,const Point&); double cross(const Point&,const Point&); Point polar(const double,const double); Point rotate(const Point&,const double); enum{ONLINE_FRONT=-2,CLOCKWISE=-1,ON_SEGMENT=0,COUNTER_CLOCKWISE=1,ONLINE_BACK=2}; int ccw(const Point&,const Point&,const Point&); int ccw(const Line&,const Point&); bool orthogonal(const Point&,const Point&); bool orthogonal(const Line&,const Line&); bool parallel(const Point&,const Point&); bool parallel(const Line&,const Line&); bool intersect(const Line&,const Point&); bool intersect(const Line&,const Line&); bool intersect(const Segment&,const Point&); bool intersect(const Segment&,const Segment&); bool intersect(const Line&,const Segment&); bool intersect(const Segment&,const Line&); bool intersect(const Circle&,const Point&); int intersect(const Circle&,const Line&);//count contacts int intersect(const Circle&,const Segment&); int intersect(const Circle&,const Circle&);//count common tangents double distance(const Point&,const Point&); double distance(const Line&,const Point&); double distance(const Line&,const Line&); double distance(const Segment&,const Point&); double distance(const Segment&,const Segment&); double distance(const Line&,const Segment&); double distance(const Segment&,const Line&); double distance(const Circle&,const Point&); double distance(const Circle&,const Line&); double distance(const Circle&,const Segment&); double distance(const Circle&,const Circle&); Point projection(const Line&,const Point&); Point reflection(const Line&,const Point&); Point crosspoint(const Line&,const Line&); pair<Point,Point>crosspoint(const Circle&,const Line&); pair<Point,Point>crosspoint(const Circle&,const Segment&); pair<Point,Point>crosspoint(const Circle&,const Circle&); pair<Point,Point>tangent(const Circle&,const Point&); vector<Line>tangent(const Circle&,const Circle&); bool is_convex(const Polygon&); Polygon convex_full(Polygon,bool=false); enum{OUT,ON,IN}; int contain(const Polygon&,const Point&); int contain(const Circle&,const Point&); int contain(const Circle&,const Segment&); Polygon convex_cut(const Polygon&,const Line&); double diameter(Polygon); double area(const Polygon&); double area(const Polygon&,const Line&); double area(const Polygon&,const Circle&); //function list end Point vec(const Line&s){return s.p2-s.p1;} double norm(const Point&p){return p.x*p.x+p.y*p.y;} double norm(const Line&s){return norm(vec(s));} double abs(const Point&p){return hypot(p.x,p.y);} double abs(const Line&s){return abs(vec(s));} double arg(const Point&p){return atan2(p.y,p.x);} double arg(const Line&s){return arg(vec(s));} double arg(const Point&a,const Point&b,const Point&c){ double A=arg(b-a),B=arg(c-b); double theta=abs(A-B); return min(theta,2*M_PI-theta); } double dot(const Point&a,const Point&b){return a.x*b.x+a.y*b.y;} double cross(const Point&a,const Point&b){return a.x*b.y-a.y*b.x;} Point polar(const double r,const double theta){return Point(cos(theta),sin(theta))*r;} Point rotate(const Point&p,const double theta){ return Point(p.x*cos(theta)-p.y*sin(theta),p.x*sin(theta)+p.y*cos(theta)); } int ccw(const Point&a,const Point&b,const Point&c){ Point p=b-a,q=c-a; return cross(p,q)>EPS?COUNTER_CLOCKWISE :cross(p,q)<-EPS?CLOCKWISE :dot(p,q)<0?ONLINE_BACK :norm(p)<norm(q)?ONLINE_FRONT :ON_SEGMENT; } int ccw(const Line&s,const Point&p){return ccw(s.p1,s.p2,p);} bool orthogonal(const Point&a,const Point&b){return eq(dot(a,b),0);} bool orthogonal(const Line&s,const Line&t){return orthogonal(vec(s),vec(t));} bool parallel(const Point&a,const Point&b){return eq(cross(a,b),0);} bool parallel(const Line&s,const Line&t){return parallel(vec(s),vec(t));} bool intersect(const Line&s,const Point&p){return eq(cross(vec(s),p-s.p1),0);} bool intersect(const Line&s,const Line&t){return !parallel(s,t)||intersect(s,t.p1);} bool intersect(const Segment&s,const Point&p){return ccw(s,p)==ON_SEGMENT;} bool intersect(const Segment&s,const Segment&t){ return ccw(s,t.p1)*ccw(s,t.p2)<=0&&ccw(t,s.p1)*ccw(t,s.p2)<=0; } bool intersect(const Line&s,const Segment&t){ return cross(vec(s),t.p1-s.p1)*cross(vec(s),t.p2-s.p1)<EPS; } bool intersect(const Segment&s,const Line&t){return intersect(t,s);} bool intersect(const Circle&c,const Point&p){return eq(distance(c.o,p),c.r);} int intersect(const Circle&c,const Line&s){ double d=distance(s,c.o); return eq(d,c.r)?1:d<c.r?2:0; } int intersect(const Circle&c,const Segment&s){ Point h=projection(s,c.o); double d1=distance(c.o,s.p1),d2=distance(c.o,s.p2); return distance(c.o,h)>c.r+EPS?0 :d1<c.r-EPS&&d2<c.r-EPS?0 :d1<c.r-EPS&&d2>c.r-EPS||d1>c.r-EPS&&d2<c.r-EPS?1 :intersect(s,h)?eq(distance(c.o,h),c.r)?1:2 :0; } int intersect(const Circle&a,const Circle&b){ double d=distance(a.o,b.o); return eq(d,a.r+b.r)?3:d>a.r+b.r?4:eq(d,abs(a.r-b.r))?1:d>abs(a.r-b.r)?2:0; } double distance(const Point&a,const Point&b){return abs(a-b);} double distance(const Line&s,const Point&p){return distance(p,projection(s,p));} double distance(const Line&s,const Line&t){return intersect(s,t)?0:distance(s,t.p1);} double distance(const Segment&s,const Point&p){ return distance(p, dot(vec(s),p-s.p1)<0?s.p1 :dot(-vec(s),p-s.p2)<0?s.p2 :projection(s,p) ); } double distance(const Segment&s,const Segment&t){ return intersect(s,t)?0:min({ distance(s,t.p1),distance(s,t.p2), distance(t,s.p1),distance(t,s.p2) }); } double distance(const Line&s,const Segment&t){ return intersect(s,t)?0:min(distance(s,t.p1),distance(s,t.p2)); } double distance(const Segment&s,const Line&t){return distance(t,s);} double distance(const Circle&c,const Point&p){return abs(distance(c.o,p)-c.r);} double distance(const Circle&c,const Line&s){return max(distance(s,c.o)-c.r,0.);} double distance(const Circle&c,const Segment&s){ return intersect(c,s)?0 :contain(c,s)?c.r-max(distance(c.o,s.p1),distance(c.o,s.p2)) :distance(s,c.o)-c.r; } double distance(const Circle&a,const Circle&b){return max(distance(a.o,b.o)-a.r-b.r,0.);} Point projection(const Line&s,const Point&p){ return s.p1+vec(s)*dot(p-s.p1,vec(s))/norm(s); } Point reflection(const Line&s,const Point&p){return projection(s,p)*2-p;} Point crosspoint(const Line&s,const Line&t){ double d1=abs(cross(vec(s),t.p1-s.p1)); double d2=abs(cross(vec(s),t.p2-s.p1)); return t.p1+vec(t)*(d1/(d1+d2)); } pair<Point,Point>crosspoint(const Circle&c,const Line&s){ Point h=projection(s,c.o); Point e=vec(s)/abs(s)*sqrt(c.r*c.r-norm(h-c.o)); return minmax(h-e,h+e); } pair<Point,Point>crosspoint(const Circle&c,const Segment&s){ pair<Point,Point>p=crosspoint(c,Line(s)); return intersect(c,s)==2?p :intersect(s,p.first)?make_pair(p.first,p.first) :make_pair(p.second,p.second); } pair<Point,Point>crosspoint(const Circle&a,const Circle&b){ double d=distance(a.o,b.o); double alpha=acos((a.r*a.r+d*d-b.r*b.r)/(2*a.r*d)); double theta=arg(b.o-a.o); return minmax(a.o+polar(a.r,theta+alpha),a.o+polar(a.r,theta-alpha)); } pair<Point,Point>tangent(const Circle&c,const Point&p){ return crosspoint(c,Circle(p,sqrt(norm(c.o-p)-c.r*c.r))); } vector<Line>tangent(const Circle&a,const Circle&b){ vector<Line>ret; double g=distance(a.o,b.o); if(eq(g,0))return ret; Point u=(b.o-a.o)/g; Point v=rotate(u,M_PI/2); for(int s:{-1,1}){ double h=(a.r+b.r*s)/g; if(eq(h*h,1))ret.emplace_back(a.o+(h>0?u:-u)*a.r,a.o+(h>0?u:-u)*a.r+v); else if(1-h*h>0){ Point U=u*h,V=v*sqrt(1-h*h); ret.emplace_back(a.o+(U+V)*a.r,b.o-(U+V)*b.r*s); ret.emplace_back(a.o+(U-V)*a.r,b.o-(U-V)*b.r*s); } } return ret; } bool is_convex(const Polygon&P){ for(int i=0;i<P.size();i++) if(ccw(P[i],P[(i+1)%P.size()],P[(i+2)%P.size()])==CLOCKWISE)return false; return true; } Polygon convex_full(Polygon P,bool ONSEG){ if(P.size()<=2)return P; sort(P.begin(),P.end()); Polygon ret(2*P.size()); int k=0,t; if(ONSEG){ for(const Point&p:P){ while(k>=2&&ccw(ret[k-2],ret[k-1],p)==CLOCKWISE)k--; ret[k++]=p; } t=k; for(int i=P.size()-2;i>=0;i--){ while(k>=t+1&&ccw(ret[k-2],ret[k-1],P[i])==CLOCKWISE)k--; ret[k++]=P[i]; } } else{ for(const Point&p:P){ while(k>=2&&ccw(ret[k-2],ret[k-1],p)!=COUNTER_CLOCKWISE)k--; ret[k++]=p; } t=k; for(int i=P.size()-2;i>=0;i--){ while(k>=t+1&&ccw(ret[k-2],ret[k-1],P[i])!=COUNTER_CLOCKWISE)k--; ret[k++]=P[i]; } } ret.resize(k-1); int mi=0; for(int i=1;i<k-1;i++) if(eq(ret[mi].y,ret[i].y)?ret[mi].x>ret[i].x:ret[mi].y>ret[i].y)mi=i; rotate(ret.begin(),ret.begin()+mi,ret.end()); return ret; } int contain(const Polygon&P,const Point&p){ bool in=false; for(int i=0;i<P.size();i++){ Segment s(P[i],P[(i+1)%P.size()]); if(intersect(s,p))return ON; else{ Point a=s.p1-p,b=s.p2-p; if(a.y>b.y)swap(a,b); if(a.y<EPS&&EPS<b.y&&cross(a,b)>EPS)in=!in; } } return in?IN:OUT; } int contain(const Circle&c,const Point&p){ double d=distance(c.o,p); return eq(d,c.r)?ON:d<c.r?IN:OUT; } int contain(const Circle&c,const Segment&s){ double d1=distance(c.o,s.p1),d2=distance(c.o,s.p2); return d1<c.r+EPS&&d2<c.r+EPS?eq(d1,c.r)||eq(d2,c.r)?ON:IN:OUT; } Polygon convex_cut(const Polygon&P,const Line&s){ Polygon ret; for(int i=0;i<P.size();i++){ Segment t(P[i],P[(i+1)%P.size()]); if(ccw(s,t.p1)!=CLOCKWISE)ret.push_back(t.p1); if(!parallel(s,t)&&!intersect(s,t.p1) &&!intersect(s,t.p2)&&intersect(s,t))ret.push_back(crosspoint(s,t)); } return ret; } double diameter(Polygon P){ if(!is_convex(P))P=convex_full(P); int mi=0,Mi=0; for(int i=1;i<P.size();i++){ if(P[i].x<P[mi].x)mi=i; if(P[i].x>P[Mi].x)Mi=i; } double ret=0; int sm=mi,sM=Mi; while(mi!=sM||Mi!=sm){ ret=max(ret,norm(P[mi]-P[Mi])); if(cross(P[(mi+1)%P.size()]-P[mi],P[(Mi+1)%P.size()]-P[Mi])<0)mi=(mi+1)%P.size(); else Mi=(Mi+1)%P.size(); } return sqrt(ret); } double area(const Polygon&P){ double ret=0; for(int i=0;i<P.size();i++)ret+=cross(P[i],P[(i+1)%P.size()]); return ret/2; } double area(const Polygon&P,const Line&s){return area(convex_cut(P,s));} double area(const Polygon&P,const Circle&c){ double ret=0; for(int i=0;i<P.size();i++) { Segment s(P[i],P[(i+1)%P.size()]); if(contain(c,s))ret+=cross(s.p1-c.o,s.p2-c.o); else if(!intersect(c,s)){ double a=arg(s.p2-c.o)-arg(s.p1-c.o); if(a>M_PI)a-=2*M_PI; if(a<-M_PI)a+=2*M_PI; ret+=c.r*c.r*a; } else { pair<Point,Point>p=crosspoint(c,s); Point tmp[4]={s.p1,p.first,p.second,s.p2}; if(intersect(c,Segment(s.p1,p.first))==2)swap(tmp[1],tmp[2]); for(int j=0;j<3;j++) { Segment t(tmp[j],tmp[j+1]); if(contain(c,t))ret+=cross(t.p1-c.o,t.p2-c.o); else{ double a=arg(t.p2-c.o)-arg(t.p1-c.o); if(a>M_PI)a-=2*M_PI; if(a<-M_PI)a+=2*M_PI; ret+=c.r*c.r*a; } } } } return ret/2; } main() { Polygon P(5); for(Point&p:P)cin>>p; cout<<(convex_full(P).size()==5?"YES":"NO")<<endl; }