結果
| 問題 |
No.931 Multiplicative Convolution
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-11-22 21:46:32 |
| 言語 | D (dmd 2.109.1) |
| 結果 |
AC
|
| 実行時間 | 212 ms / 2,000 ms |
| コード長 | 6,448 bytes |
| コンパイル時間 | 670 ms |
| コンパイル使用メモリ | 122,672 KB |
| 実行使用メモリ | 20,276 KB |
| 最終ジャッジ日時 | 2024-06-22 03:03:10 |
| 合計ジャッジ時間 | 4,079 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 14 |
ソースコード
import std.conv, std.functional, std.range, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.numeric, std.regex, std.typecons;
import core.bitop;
class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }
real readReal() { return readToken.to!real; }
bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }
int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }
// a^-1 (mod 2^64)
long modInv(long a)
in {
assert(a & 1, "modInv: a must be odd");
}
do {
long b = ((a << 1) + a) ^ 2;
b *= 2 - a * b;
b *= 2 - a * b;
b *= 2 - a * b;
b *= 2 - a * b;
return b;
}
// a^-1 (mod m)
long modInv(long a, long m)
in {
assert(m > 0, "modInv: m > 0 must hold");
}
do {
long b = m, x = 1, y = 0, t;
for (; ; ) {
t = a / b; a -= t * b;
if (a == 0) {
assert(b == 1 || b == -1, "modInv: gcd(a, m) != 1");
if (b == -1) y = -y;
return (y < 0) ? (y + m) : y;
}
x -= t * y;
t = b / a; b -= t * a;
if (b == 0) {
assert(a == 1 || a == -1, "modInv: gcd(a, m) != 1");
if (a == -1) x = -x;
return (x < 0) ? (x + m) : x;
}
y -= t * x;
}
}
// 2^-31 a (mod M)
long montgomery(long M)(long a) if (1 <= M && M <= 0x7fffffff && (M & 1))
in {
assert(0 <= a && a < (M << 31), "montgomery: 0 <= a < 2^31 M must hold");
}
do {
enum negInvM = -modInv(M) & 0x7fffffff;
const b = (a + ((a * negInvM) & 0x7fffffff) * M) >> 31;
return (b >= M) ? (b - M) : b;
}
// FFT on Z / M Z with Montgomery multiplication (x -> 2^31 x)
// G: primitive 2^K-th root of unity
class FFT(long M, int K, long G)
if (is(typeof(montgomery!(M)(0))) && K >= 0 && 0 < G && G < M) {
import std.algorithm : swap;
import core.bitop : bsf;
int n, invN;
long[] g;
this(int n)
in {
assert(!(n & (n - 1)), "FFT.this: n must be a power of 2");
assert(4 <= n && n <= 1 << K, "FFT.this: 4 <= n <= 2^K must hold");
}
do {
this.n = n;
this.invN = ((1L << 31) / n) % M;
g.length = n + 1;
g[0] = (1L << 31) % M;
g[1] = (G << 31) % M;
foreach (_; 0 .. K - bsf(n)) {
g[1] = montgomery!(M)(g[1] * g[1]);
}
foreach (i; 2 .. n + 1) {
g[i] = montgomery!(M)(g[i - 1] * g[1]);
}
assert(g[0] != g[n >> 1] && g[0] == g[n],
"FFT.this: G must be a primitive 2^K-th root of unity");
for (int i = 0, j = 0; i < n >> 1; ++i) {
if (i < j) {
swap(g[i], g[j]);
swap(g[n - i], g[n - j]);
}
for (int m = n >> 1; (m >>= 1) && !((j ^= m) & m); ) {}
}
}
void fftMontgomery(long[] x, bool inv)
in {
assert(x.length == n, "FFT.fftMontgomery: |x| = n must hold");
}
do {
foreach_reverse (h; 0 .. bsf(n)) {
const l = 1 << h;
foreach (i; 0 .. n >> 1 >> h) {
const gI = g[inv ? (n - i) : i];
foreach (j; i << 1 << h .. ((i << 1) + 1) << h) {
const t = montgomery!(M)(gI * x[j + l]);
if ((x[j + l] = x[j] - t) < 0) {
x[j + l] += M;
}
if ((x[j] += t) >= M) {
x[j] -= M;
}
}
}
}
for (int i = 0, j = 0; i < n; ++i) {
if (i < j) {
swap(x[i], x[j]);
}
for (int m = n; (m >>= 1) && !((j ^= m) & m); ) {}
}
if (inv) {
foreach (i; 0 .. n) {
x[i] = montgomery!(M)(invN * x[i]);
}
}
}
long[] convolution(long[] a, long[] b)
in {
assert(a.length <= n, "FFT.convolution: |a| <= n must hold");
assert(b.length <= n, "FFT.convolution: |b| <= n must hold");
}
do {
auto x = new long[n], y = new long[n];
foreach (i; 0 .. a.length) {
const t = a[i] % M;
x[i] = (((t < 0) ? (t + M) : t) << 31) % M;
}
foreach (i; 0 .. b.length) {
const t = b[i] % M;
y[i] = (((t < 0) ? (t + M) : t) << 31) % M;
}
fftMontgomery(x, false);
fftMontgomery(y, false);
foreach (i; 0 .. n) {
x[i] = montgomery!(M)(x[i] * y[i]);
}
fftMontgomery(x, true);
foreach (i; 0 .. n) {
x[i] = montgomery!(M)(x[i]);
}
return x;
}
}
enum MO = 998244353;
alias FFT0 = FFT!(MO, 23, 31L);
void main() {
try {
for (; ; ) {
const P = readInt;
auto A = new long[P];
foreach (i; 1 .. P) {
A[i] = readLong();
}
auto B = new long[P];
foreach (i; 1 .. P) {
B[i] = readLong();
}
long[] divs;
foreach (d; 1 .. P - 1) {
if ((P - 1) % d == 0) {
divs ~= d;
}
}
long g;
for (g = 2; ; ++g) {
bool ok = true;
foreach (d; divs) {
long gg = g, gd = 1;
for (long e = d; e; e >>= 1) {
if (e & 1) gd = (gd * gg) % P;
gg = (gg * gg) % P;
}
ok = ok && (gd != 1);
}
if (ok) {
break;
}
}
auto gs = new long[P - 1];
gs[0] = 1;
foreach (i; 1 .. P - 1) {
gs[i] = (gs[i - 1] * g) % P;
}
debug {
writeln("gs = ", gs);
}
int fftN;
for (fftN = 4; fftN < 2 * P; fftN <<= 1) {}
auto fft = new FFT0(fftN);
auto a = new long[2 * P];
auto b = new long[2 * P];
foreach (i; 0 .. P - 1) {
a[i] = A[cast(int)(gs[i])];
b[i] = B[cast(int)(gs[i])];
}
const c = fft.convolution(a, b);
auto ans = new long[P];
foreach (i; 0 .. 2 * (P - 1)) {
ans[cast(int)(gs[i % (P - 1)])] += c[i];
}
foreach (i; 0 .. P) {
ans[i] = (ans[i] % MO + MO) % MO;
}
foreach (i; 1 .. P) {
if (i > 1) write(" ");
write(ans[i]);
}
writeln();
}
} catch (EOFException e) {
}
}