結果

問題 No.931 Multiplicative Convolution
ユーザー hitonanode
提出日時 2019-11-22 23:30:47
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 289 ms / 2,000 ms
コード長 8,384 bytes
コンパイル時間 1,878 ms
コンパイル使用メモリ 183,200 KB
実行使用メモリ 12,752 KB
最終ジャッジ日時 2024-10-11 05:00:58
合計ジャッジ時間 5,841 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'int find_primitive_root(int)':
main.cpp:224:1: warning: control reaches end of non-void function [-Wreturn-type]
  224 | }
      | ^

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define POW2(n) (1LL << (n))
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args
    ...); }
template<typename T> bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l
    .second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l
    .second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
///// This part below is only for debug, not used /////
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return
    os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}";
    return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return
    os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v
    .second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "
    =>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
///// END /////
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/
lint power(lint x, lint n, lint MOD)
{
lint ans = 1;
while (n>0)
{
if (n & 1) (ans *= x) %= MOD;
(x *= x) %= MOD;
n >>= 1;
}
return ans %= MOD;
}
// Solve ax+by=gcd(a, b)
lint extgcd(lint a, lint b, lint &x, lint &y)
{
lint d = a;
if (b != 0) d = extgcd(b, a % b, y, x), y -= (a / b) * x;
else x = 1, y = 0;
return d;
}
// Calc a^(-1) (MOD m)
lint mod_inverse(lint a, lint m)
{
lint x, y;
extgcd(a, m, x, y);
return (m + x % m) % m;
}
// mod: , primitive_root: mod is_inverse: true
void fft_mod(vector<lint> &a, lint mod, lint primitive_root, bool is_inverse=false)
{
int n = a.size();
lint h = power(primitive_root, (mod - 1) / n, mod);
if (is_inverse) h = mod_inverse(h, mod);
int i = 0;
FOR(j, 1, n - 1) {
for (int k = n >> 1; k > (i ^= k); k >>= 1);
if (j < i) swap(a[i], a[j]);
}
for (int m = 1; m < n; m *= 2) {
int m2 = 2 * m;
lint base = power(h, n / m2, mod);
lint w = 1;
REP(x, m) {
for (int s = x; s < n; s += m2) {
lint u = a[s], d = a[s + m] * w % mod;
a[s] = u + d - (u + d >= mod ? mod : 0), a[s + m] = u - d + (u - d < 0 ? mod : 0);
}
w = w * base % mod;
}
}
for (auto &v : a) v = (v < 0 ? v + mod : v);
if (is_inverse)
{
lint n_inv = mod_inverse(n, mod);
for (auto &v : a) v = v * n_inv % mod;
}
}
// MOD mod retval[i] = \sum_j a[j] b[i - j]
vector<lint> convolution_mod(vector<lint> a, vector<lint> b, lint mod, lint primitive_root)
{
int sz = 1;
while (sz < a.size() + b.size()) sz <<= 1;
a.resize(sz), b.resize(sz);
fft_mod(a, mod, primitive_root, false), fft_mod(b, mod, primitive_root, false);
REP(i, sz) a[i] = a[i] * b[i] % mod;
fft_mod(a, mod, primitive_root, true);
return a;
}
constexpr lint MOD = 998244353;
struct babystep_giantstep_modlog
{
lint M, sqrtM;
lint a, biga;
inline lint power(lint x, lint n)
{
lint ans = 1;
while (n>0)
{
if (n & 1) (ans *= x) %= M;
(x *= x) %= M;
n >>= 1;
}
return ans;
}
inline lint inverse(lint a)
{
lint b = M, u = 1, v = 0;
while (b)
{
lint t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
return u >= 0 ? u % M : u % M + M;
}
babystep_giantstep_modlog(lint mod) : M(mod), a(-1)
{
lint l = -1, r = M;
while (r - l > 1)
{
lint c = (l + r) / 2;
(c * c >= M ? r : l) = c;
}
sqrtM = r;
}
map<lint, lint> a_power;
void set_base(lint a_new)
{
if (a_new == a) return;
a = a_new;
biga = power(inverse(a), sqrtM);
{
a_power.clear();
lint now = 1;
for (lint n = 0; n < sqrtM; n++)
{
a_power[now] = n;
(now *= a_new) %= M;
}
}
}
map<lint, lint> biga_power;
lint query(lint b)
{
biga_power.clear();
lint now = b;
for (lint q = 0; q <= sqrtM; q++)
{
if (a_power.count(now))
{
lint res = q * sqrtM + a_power[now];
if (res > 0)
return res;
}
(now *= biga) %= M;
}
return -1;
}
};
int find_primitive_root(int p)
{
vector<int> fac;
lint pp = 2;
int v = p - 1;
while (v >= pp * pp)
{
int e = 0;
while (v % pp == 0)
{
e++;
v /= pp;
}
if (e) fac.push_back(pp);
pp++;
}
if (v > 1) fac.push_back(v);
int g = 2;
while (g < p)
{
if (power(g, p - 1, p) != 1) exit(8);
bool ok = true;
for (auto pp : fac)
{
if (power(g, (p - 1) / pp, p) == 1)
{
ok = false;
break;
}
}
if (ok) return g;
g++;
}
}
int main()
{
int P;
cin >> P;
vector<lint> A(P - 1), B(P - 1);
cin >> A >> B;
if (P == 2)
{
cout << A[0] * B[0] % MOD << endl;
return 0;
}
lint b = find_primitive_root(P);
vector<lint> pp(P, 1), ppinv(P);
FOR(i, 1, P) pp[i] = pp[i - 1] * b % P;
REP(i, P) ppinv[pp[i]] = i;
vector<lint> AS(P), BS(P);
REP(i, P - 1) AS[ppinv[i + 1]] = A[i];
REP(i, P - 1) BS[ppinv[i + 1]] = B[i];
vector<lint> v = convolution_mod(AS, BS, MOD, 3);
vector<lint> ret(P + 1);
FOR(i, 1, v.size())
{
(ret[power(b, i, P)] += v[i]) %= MOD;
}
FOR(i, 1, P) printf("%lld ", ret[i]);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0