結果
問題 | No.931 Multiplicative Convolution |
ユーザー | ei1333333 |
提出日時 | 2019-11-23 00:13:53 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,824 bytes |
コンパイル時間 | 2,532 ms |
コンパイル使用メモリ | 215,288 KB |
実行使用メモリ | 9,368 KB |
最終ジャッジ日時 | 2024-10-11 06:34:51 |
合計ジャッジ時間 | 4,172 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 56 ms
9,156 KB |
testcase_10 | WA | - |
testcase_11 | AC | 57 ms
9,184 KB |
testcase_12 | AC | 42 ms
6,652 KB |
testcase_13 | WA | - |
testcase_14 | AC | 72 ms
9,232 KB |
testcase_15 | AC | 71 ms
9,368 KB |
testcase_16 | AC | 70 ms
9,152 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using int64 = long long; const int mod = 998244353; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for(auto &e : t) fill_v(e, v); } template< typename F > struct FixPoint : F { FixPoint(F &&f) : F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } template< typename Mint > struct NumberTheoreticTransformFriendlyModInt { vector< int > rev; vector< Mint > rts; int base, max_base; Mint root; NumberTheoreticTransformFriendlyModInt() : base(1), rev{0, 1}, rts{0, 1} { const int mod = Mint::get_mod(); assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(root.pow((mod - 1) >> 1) == 1) root += 1; assert(root.pow(mod - 1) == 1); root = root.pow((mod - 1) >> max_base); } void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while(base < nbase) { Mint z = root.pow(1 << (max_base - 1 - base)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = rts[i] * z; } ++base; } } void ntt(vector< Mint > &a) { const int n = (int) a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { Mint z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } void intt(vector< Mint > &a) { const int n = (int) a.size(); ntt(a); reverse(a.begin() + 1, a.end()); Mint inv_sz = Mint(1) / n; for(int i = 0; i < n; i++) a[i] *= inv_sz; } vector< Mint > multiply(vector< Mint > a, vector< Mint > b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); Mint inv_sz = Mint(1) / sz; for(int i = 0; i < sz; i++) { a[i] *= b[i] * inv_sz; } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } }; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; int64_t mod_pow(int64_t x, int64_t n, int64_t mod) { int64_t ret = 1; while(n > 0) { if(n & 1) (ret *= x) %= mod; (x *= x) %= mod; n >>= 1; } return ret; } int main() { int P; cin >> P; vector< modint > A(P), B(P); for(int i = 1; i < P; i++) cin >> A[i]; for(int i = 1; i < P; i++) cin >> B[i]; if(P == 2) { cout << A[1] * B[1] << endl; return 0; } int root = 2; while(mod_pow(root, (P - 1) >> 1, P) == 1) ++root; vector< modint > C(P - 1), D(P - 1); int tap = 1; for(int i = 0; i < P - 1; i++) { C[i] = A[tap]; D[i] = B[tap]; (tap *= root) %= P; } NumberTheoreticTransformFriendlyModInt< modint > ntt; auto E = ntt.multiply(C, D); tap = 1; vector< modint > F(P - 1); for(int i = 0; i < E.size(); i++) { F[tap - 1] += E[i]; (tap *= root) %= P; } cout << F << endl; }