結果

問題 No.931 Multiplicative Convolution
ユーザー 37zigen37zigen
提出日時 2019-11-23 01:05:55
言語 Java21
(openjdk 21)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,174 bytes
コンパイル時間 2,792 ms
コンパイル使用メモリ 82,440 KB
実行使用メモリ 69,432 KB
最終ジャッジ日時 2024-10-11 06:42:40
合計ジャッジ時間 25,814 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 168 ms
42,452 KB
testcase_01 AC 170 ms
42,652 KB
testcase_02 AC 170 ms
47,252 KB
testcase_03 AC 169 ms
42,776 KB
testcase_04 AC 169 ms
42,668 KB
testcase_05 AC 187 ms
42,860 KB
testcase_06 AC 297 ms
44,932 KB
testcase_07 AC 706 ms
48,920 KB
testcase_08 TLE -
testcase_09 TLE -
testcase_10 TLE -
testcase_11 TLE -
testcase_12 TLE -
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

import java.math.*;
import java.util.*;
import java.io.*;

class Main
{
    public static void main(String[] args)
    {
        new Main().run();
    }
    
    void run() {
        Scanner sc = new Scanner(System.in);
        long MODULO = 998244353;
        long ROOT = 3;
        long P = sc.nextLong();
        long[] A = new long[(int) P + 1];
        long[] B = new long[(int) P + 1];
        for (int i = 1; i < P; ++i) {
            A[i] = sc.nextLong();
        }
        for (int i = 1; i < P; ++i) {
            B[i] = sc.nextLong();
        }
        ArrayList<Long> div = new ArrayList<Long>();
        for (long i = 2; i * i <= P - 1; ++i) {
            if ((P - 1) % i == 0) div.add((P - 1) / i);
        }
        long root = -1;
        if (P == 2) root = 1;
        else if (P == 3) root = 2;
        out:for (long i = 2; root == -1 && i <= P - 1; ++i) {
            for (long d : div) {
                if (pow(i, d, P) == 1) {
                    continue out;
                }
            }
            root = i;
            break;
        }
        long[] A2 = new long[(int) (2 * P)];
        long[] B2 = new long[(int) (2 * P)];
        for (int i = 1; i <= P - 1; ++i) {
            A2[i] = A[(int) pow(root, i, P)];
            B2[i] = B[(int) pow(root, i, P)];
        }
        long[] C2 = mul(A2, B2, MODULO, ROOT);
        long[] C = new long[(int) P];
        for (int i = 0; i < C2.length; ++i) {
            C[(int) pow(root, i, P)] += C2[i];
        }
        PrintWriter pw = new PrintWriter(System.out);
        for (int i = 1; i < C.length; ++i) {
            pw.print(C[i]%MODULO+(i==C.length-1?"\n":" "));
        }
        pw.close();
    }
    
    long[] mul(long[] a, long[] b, long MODULO, long root) {
		int n = Integer.highestOneBit(a.length + b.length) << 1;
		a = Arrays.copyOf(a, n);
		b = Arrays.copyOf(b, n);
		a = fft(a, false, MODULO, root);
		b = fft(b, false, MODULO, root);
		for (int i = 0; i < n; ++i)
			a[i] = a[i] * b[i] % MODULO;
		a = fft(a, true, MODULO, root);
		long inv = inv(n, MODULO);
		for (int i = 0; i < n; ++i) {
			a[i] = a[i] * inv % MODULO;
		}
		return a;
	}

	long[] fft(long[] a, boolean inv, long MODULO, long root) {
		int n = a.length;
		int c = 0;
		for (int i = 1; i < n; ++i) {
			for (int j = n >> 1; j > (c ^= j); j >>= 1)
				;
			if (c > i) {
				long d = a[i];
				a[i] = a[c];
				a[c] = d;
			}
		}
		for (int i = 1; i < n; i *= 2) {
			long w = pow(root, (MODULO - 1) / (2 * i), MODULO);
			if (inv)
				w = inv(w, MODULO);
			for (int j = 0; j < n; j += 2 * i) {
				long wn = 1;
				for (int k = 0; k < i; ++k) {
					long u = a[j + k];
					long v = a[j + k + i] * wn % MODULO;
					a[j + k] = (u + v) % MODULO;
					a[j + k + i] = (u - v + MODULO) % MODULO;
					wn = wn * w % MODULO;
				}
			}
		}
		return a;
	}

	long pow(long a, long n, long MODULO) {
		long ret = 1;
		for (; n > 0; n >>= 1, a = a * a % MODULO) {
			if (n % 2 == 1)
				ret = ret * a % MODULO;
		}
		return ret;
	}
    
    long inv(long a, long MODULO) {
        return pow(a, MODULO - 2, MODULO);
    }
    
    void tr(Object...o){
        System.out.println(Arrays.deepToString(o));
    }

    
}
0