結果
| 問題 | No.931 Multiplicative Convolution |
| コンテスト | |
| ユーザー |
kazuma
|
| 提出日時 | 2019-11-23 12:52:04 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 383 ms / 2,000 ms |
| コード長 | 3,117 bytes |
| 記録 | |
| コンパイル時間 | 2,626 ms |
| コンパイル使用メモリ | 199,620 KB |
| 最終ジャッジ日時 | 2025-01-08 05:30:33 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 14 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int mod_inv(ll a, ll m) {
ll b = m, u = 1, v = 0;
while (b > 0) {
ll t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
return (u % m + m) % m;
}
ll mod_pow(ll x, ll y, ll md) {
ll res = 1;
while (y) {
if (y & 1) res = res * x % md;
x = x * x % md;
y >>= 1;
}
return res;
}
template <int Mod, int PrimitiveRoot>
class fast_modulo_transform {
public:
static vector<int> fft(vector<int> v, bool inv) {
const int N = v.size();
assert((N ^ (N & -N)) == 0);
int ww = mod_pow(PrimitiveRoot, (Mod - 1) / N, Mod);
if (inv) ww = mod_inv(ww, Mod);
for (int m = N; m >= 2; m >>= 1) {
const int mh = m >> 1;
int w = 1;
for (int i = 0; i < mh; ++i) {
for (int j = i; j < N; j += m) {
const int k = j + mh;
int x = v[j] - v[k];
if (x < 0) x += Mod;
v[j] += -Mod + v[k];
if (v[j] < 0) v[j] += Mod;
v[k] = (1LL * w * x) % Mod;
}
w = (1LL * w * ww) % Mod;
}
ww = (1LL * ww * ww) % Mod;
}
int i = 0;
for (int j = 1; j < N - 1; ++j) {
for (int k = N >> 1; k >(i ^= k); k >>= 1);
if (j < i) swap(v[i], v[j]);
}
if (inv) {
const int inv_n = mod_inv(N, Mod);
for (auto& x : v) {
x = (1LL * x * inv_n) % Mod;
assert(0 <= x && x < Mod);
}
}
return v;
}
static vector<int> convolution(vector<int> f, vector<int> g) {
int sz = 1;
const int m = f.size() + g.size() - 1;
while (sz < m) sz *= 2;
f.resize(sz), g.resize(sz);
f = fast_modulo_transform::fft(move(f), false); g = fast_modulo_transform::fft(move(g), false);
for (int i = 0; i < sz; ++i) {
f[i] = (1LL * f[i] * g[i]) % Mod;
}
return fast_modulo_transform::fft(move(f), true);
}
};
const int mod = 998244353;
using fmt = fast_modulo_transform<998244353, 3>;
int mod_pow(int a, int b, int m) {
int ret = 1;
while (b) {
if (b & 1) ret = 1LL * ret * a % m;
a = 1LL * a * a % m;
b >>= 1;
}
return ret;
}
template <typename T>
T get_primitive_root(T p) { // p is prime
vector<T> fac;
T v = p - 1;
for (T pp = 2; pp * pp <= v; pp++) if (v % pp == 0) {
while (v % pp == 0) v /= pp;
fac.push_back(pp);
}
if (v > 1) fac.push_back(v);
for (T g = 2; g < p; g++) {
assert(mod_pow(g, p - 1, p) == 1);
bool ok = true;
for (auto pp : fac) {
if (mod_pow(g, (p - 1) / pp, p) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
return -1;
}
int main()
{
int P;
cin >> P;
vector<int> A(P), B(P);
for (int i = 1; i < P; i++) {
cin >> A[i];
}
for (int i = 1; i < P; i++) {
cin >> B[i];
}
int rt = get_primitive_root(P);
vector<int> v(P), pos(P);
for (int i = 0; i < P - 1; i++) {
int x = mod_pow(rt, i, P);
v[i] = x;
pos[x] = i;
}
vector<int> a(P), b(P);
for (int i = 0; i < P - 1; i++) {
a[i] = A[v[i]];
b[i] = B[v[i]];
}
auto c = fmt::convolution(a, b);
for (int i = P - 1; i < (int)c.size(); i++) {
(c[i % (P - 1)] += c[i]) %= mod;
}
vector<int> C(P);
for (int i = 0; i < P - 1; i++) {
C[v[i]] = c[i];
}
for (int i = 1; i < P; i++) {
cout << C[i] << " \n"[i + 1 == P];
}
return 0;
}
kazuma