結果

問題 No.931 Multiplicative Convolution
ユーザー はまやんはまやん
提出日時 2019-11-24 10:49:19
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 846 ms / 2,000 ms
コード長 7,464 bytes
コンパイル時間 2,248 ms
コンパイル使用メモリ 215,568 KB
最終ジャッジ日時 2025-01-08 05:33:39
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
//#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
//---------------------------------------------------------------------------------------------------
#define FOR(i,n) for(int i = 0; i < (n); i++)
#define sz(c) ((int)(c).size())
#define ten(x) ((int)1e##x)
template<class T> T extgcd(T a, T b, T & x, T & y) { for (T u = y = 1, v = x = 0; a;) { T q = b / a; swap(x -= q * u, u); swap(y -= q * v, v); swap(b
    -= q * a, a); } return b; }
template<class T> T mod_inv(T a, T m) { T x, y; extgcd(a, m, x, y); return (m + x % m) % m; }
ll mod_pow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }
struct MathsNTTModAny {
template<int mod, int primitive_root>
class NTT {
public:
int get_mod() const { return mod; }
void _ntt(vector<ll>& a, int sign) {
const int n = sz(a);
assert((n ^ (n & -n)) == 0); //n = 2^k
const int g = 3; //g is primitive root of mod
int h = (int)mod_pow(g, (mod - 1) / n, mod); // h^n = 1
if (sign == -1) h = (int)mod_inv(h, mod); //h = h^-1 % mod
//bit reverse
int i = 0;
for (int j = 1; j < n - 1; ++j) {
for (int k = n >> 1; k > (i ^= k); k >>= 1);
if (j < i) swap(a[i], a[j]);
}
for (int m = 1; m < n; m *= 2) {
const int m2 = 2 * m;
const ll base = mod_pow(h, n / m2, mod);
ll w = 1;
FOR(x, m) {
for (int s = x; s < n; s += m2) {
ll u = a[s];
ll d = a[s + m] * w % mod;
a[s] = u + d;
if (a[s] >= mod) a[s] -= mod;
a[s + m] = u - d;
if (a[s + m] < 0) a[s + m] += mod;
}
w = w * base % mod;
}
}
for (auto& x : a) if (x < 0) x += mod;
}
void ntt(vector<ll> & input) {
_ntt(input, 1);
}
void intt(vector<ll> & input) {
_ntt(input, -1);
const int n_inv = mod_inv(sz(input), mod);
for (auto& x : input) x = x * n_inv % mod;
}
vector<ll> convolution(const vector<ll> & a, const vector<ll> & b) {
int ntt_size = 1;
while (ntt_size < sz(a) + sz(b)) ntt_size *= 2;
vector<ll> _a = a, _b = b;
_a.resize(ntt_size); _b.resize(ntt_size);
ntt(_a);
ntt(_b);
FOR(i, ntt_size) {
(_a[i] *= _b[i]) %= mod;
}
intt(_a);
return _a;
}
};
ll garner(vector<pair<int,int>> mr, int mod) {
mr.emplace_back(mod, 0);
vector<ll> coffs(sz(mr), 1);
vector<ll> constants(sz(mr), 0);
FOR(i, sz(mr) - 1) {
// coffs[i] * v + constants[i] == mr[i].second (mod mr[i].first)
ll v = (mr[i].second - constants[i]) * mod_inv<ll>(coffs[i], mr[i].first) % mr[i].first;
if (v < 0) v += mr[i].first;
for (int j = i + 1; j < sz(mr); j++) {
(constants[j] += coffs[j] * v) %= mr[j].first;
(coffs[j] *= mr[i].first) %= mr[j].first;
}
}
return constants[sz(mr) - 1];
}
typedef NTT<167772161, 3> NTT_1;
typedef NTT<469762049, 3> NTT_2;
typedef NTT<1224736769, 3> NTT_3;
vector<ll> solve(vector<ll> a, vector<ll> b, int mod = 1000000007) {
for (auto& x : a) x %= mod;
for (auto& x : b) x %= mod;
NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;
assert(ntt1.get_mod() < ntt2.get_mod() && ntt2.get_mod() < ntt3.get_mod());
auto x = ntt1.convolution(a, b);
auto y = ntt2.convolution(a, b);
auto z = ntt3.convolution(a, b);
const ll m1 = ntt1.get_mod(), m2 = ntt2.get_mod(), m3 = ntt3.get_mod();
const ll m1_inv_m2 = mod_inv<ll>(m1, m2);
const ll m12_inv_m3 = mod_inv<ll>(m1 * m2, m3);
const ll m12_mod = m1 * m2 % mod;
vector<ll> ret(sz(x));
FOR(i, sz(x)) {
ll v1 = (y[i] - x[i]) * m1_inv_m2 % m2;
if (v1 < 0) v1 += m2;
ll v2 = (z[i] - (x[i] + m1 * v1) % m3) * m12_inv_m3 % m3;
if (v2 < 0) v2 += m3;
ll constants3 = (x[i] + m1 * v1 + m12_mod * v2) % mod;
if (constants3 < 0) constants3 += mod;
ret[i] = constants3;
}
return ret;
}
vector<int> solve(vector<int> a, vector<int> b, int mod = 1000000007) {
vector<ll> x(all(a));
vector<ll> y(all(b));
auto z = solve(x, y, mod);
vector<int> res;
fore(aa, z) res.push_back(aa % mod);
return res;
}
};
// return primitive root of P
ll get_root(ll p) {
for (int i = 2; i < p; i++) {
set<int> S;
int x = 1, j;
while (1) {
if (S.size() == p - 1) return i;
if (S.count(x)) break;
S.insert(x);
x = x * i % p;
}
}
assert(0);
}
// C[k] = sum_{1<=i,j<P and k=(i*j)modP}A[i]B[j]
// https://yukicoder.me/problems/no/931
vector<int> convolutionMulModP(vector<int> A, vector<int> B, int P, int mod) {
if (P == 2) return { 0, (int)((1LL * A[1] * B[1]) % mod) };
ll root = get_root(P);
vector<ll> a(1 << 17), b(1 << 17);
ll v = 1;
rep(i, 0, P - 1) {
a[i] = A[v];
b[i] = B[v];
v = (v * root) % P;
}
MathsNTTModAny ntt;
auto c = ntt.solve(a, b, mod);
vector<int> res(P);
v = 1;
rep(i, 0, c.size()) {
res[v] = (res[v] + c[i]) % mod;
v = (v * root) % P;
}
return res;
}
/*---------------------------------------------------------------------------------------------------
           _
     _ ´<_   Welcome to My Coding Space!
     ´_` /  ⌒i @hamayanhamayan
           | |
    /   //  |
  __(__ニ/  _/ .| .|____
     /____/ u 
---------------------------------------------------------------------------------------------------*/
int P;
//---------------------------------------------------------------------------------------------------
void _main() {
cin >> P;
vector<int> A = { 0 };
rep(i, 0, P - 1) {
int a; cin >> a;
A.push_back(a);
}
vector<int> B = { 0 };
rep(i, 0, P - 1) {
int a; cin >> a;
B.push_back(a);
}
auto ans = convolutionMulModP(A, B, P, 998244353);
rep(i, 1, P) {
if (i != 1) printf(" ");
printf("%d", ans[i]);
}
printf("\n");
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0