結果
問題 | No.931 Multiplicative Convolution |
ユーザー |
![]() |
提出日時 | 2019-11-24 10:49:19 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 846 ms / 2,000 ms |
コード長 | 7,464 bytes |
コンパイル時間 | 2,248 ms |
コンパイル使用メモリ | 215,568 KB |
最終ジャッジ日時 | 2025-01-08 05:33:39 |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 14 |
ソースコード
#include<bits/stdc++.h>#define rep(i,a,b) for(int i=a;i<b;i++)#define rrep(i,a,b) for(int i=a;i>=b;i--)#define fore(i,a) for(auto &i:a)#define all(x) (x).begin(),(x).end()//#pragma GCC optimize ("-O3")using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }//---------------------------------------------------------------------------------------------------#define FOR(i,n) for(int i = 0; i < (n); i++)#define sz(c) ((int)(c).size())#define ten(x) ((int)1e##x)template<class T> T extgcd(T a, T b, T & x, T & y) { for (T u = y = 1, v = x = 0; a;) { T q = b / a; swap(x -= q * u, u); swap(y -= q * v, v); swap(b-= q * a, a); } return b; }template<class T> T mod_inv(T a, T m) { T x, y; extgcd(a, m, x, y); return (m + x % m) % m; }ll mod_pow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }struct MathsNTTModAny {template<int mod, int primitive_root>class NTT {public:int get_mod() const { return mod; }void _ntt(vector<ll>& a, int sign) {const int n = sz(a);assert((n ^ (n & -n)) == 0); //n = 2^kconst int g = 3; //g is primitive root of modint h = (int)mod_pow(g, (mod - 1) / n, mod); // h^n = 1if (sign == -1) h = (int)mod_inv(h, mod); //h = h^-1 % mod//bit reverseint i = 0;for (int j = 1; j < n - 1; ++j) {for (int k = n >> 1; k > (i ^= k); k >>= 1);if (j < i) swap(a[i], a[j]);}for (int m = 1; m < n; m *= 2) {const int m2 = 2 * m;const ll base = mod_pow(h, n / m2, mod);ll w = 1;FOR(x, m) {for (int s = x; s < n; s += m2) {ll u = a[s];ll d = a[s + m] * w % mod;a[s] = u + d;if (a[s] >= mod) a[s] -= mod;a[s + m] = u - d;if (a[s + m] < 0) a[s + m] += mod;}w = w * base % mod;}}for (auto& x : a) if (x < 0) x += mod;}void ntt(vector<ll> & input) {_ntt(input, 1);}void intt(vector<ll> & input) {_ntt(input, -1);const int n_inv = mod_inv(sz(input), mod);for (auto& x : input) x = x * n_inv % mod;}vector<ll> convolution(const vector<ll> & a, const vector<ll> & b) {int ntt_size = 1;while (ntt_size < sz(a) + sz(b)) ntt_size *= 2;vector<ll> _a = a, _b = b;_a.resize(ntt_size); _b.resize(ntt_size);ntt(_a);ntt(_b);FOR(i, ntt_size) {(_a[i] *= _b[i]) %= mod;}intt(_a);return _a;}};ll garner(vector<pair<int,int>> mr, int mod) {mr.emplace_back(mod, 0);vector<ll> coffs(sz(mr), 1);vector<ll> constants(sz(mr), 0);FOR(i, sz(mr) - 1) {// coffs[i] * v + constants[i] == mr[i].second (mod mr[i].first) を解くll v = (mr[i].second - constants[i]) * mod_inv<ll>(coffs[i], mr[i].first) % mr[i].first;if (v < 0) v += mr[i].first;for (int j = i + 1; j < sz(mr); j++) {(constants[j] += coffs[j] * v) %= mr[j].first;(coffs[j] *= mr[i].first) %= mr[j].first;}}return constants[sz(mr) - 1];}typedef NTT<167772161, 3> NTT_1;typedef NTT<469762049, 3> NTT_2;typedef NTT<1224736769, 3> NTT_3;vector<ll> solve(vector<ll> a, vector<ll> b, int mod = 1000000007) {for (auto& x : a) x %= mod;for (auto& x : b) x %= mod;NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;assert(ntt1.get_mod() < ntt2.get_mod() && ntt2.get_mod() < ntt3.get_mod());auto x = ntt1.convolution(a, b);auto y = ntt2.convolution(a, b);auto z = ntt3.convolution(a, b);const ll m1 = ntt1.get_mod(), m2 = ntt2.get_mod(), m3 = ntt3.get_mod();const ll m1_inv_m2 = mod_inv<ll>(m1, m2);const ll m12_inv_m3 = mod_inv<ll>(m1 * m2, m3);const ll m12_mod = m1 * m2 % mod;vector<ll> ret(sz(x));FOR(i, sz(x)) {ll v1 = (y[i] - x[i]) * m1_inv_m2 % m2;if (v1 < 0) v1 += m2;ll v2 = (z[i] - (x[i] + m1 * v1) % m3) * m12_inv_m3 % m3;if (v2 < 0) v2 += m3;ll constants3 = (x[i] + m1 * v1 + m12_mod * v2) % mod;if (constants3 < 0) constants3 += mod;ret[i] = constants3;}return ret;}vector<int> solve(vector<int> a, vector<int> b, int mod = 1000000007) {vector<ll> x(all(a));vector<ll> y(all(b));auto z = solve(x, y, mod);vector<int> res;fore(aa, z) res.push_back(aa % mod);return res;}};// return primitive root of Pll get_root(ll p) {for (int i = 2; i < p; i++) {set<int> S;int x = 1, j;while (1) {if (S.size() == p - 1) return i;if (S.count(x)) break;S.insert(x);x = x * i % p;}}assert(0);}// C[k] = sum_{1<=i,j<P and k=(i*j)modP}A[i]B[j]// https://yukicoder.me/problems/no/931vector<int> convolutionMulModP(vector<int> A, vector<int> B, int P, int mod) {if (P == 2) return { 0, (int)((1LL * A[1] * B[1]) % mod) };ll root = get_root(P);vector<ll> a(1 << 17), b(1 << 17);ll v = 1;rep(i, 0, P - 1) {a[i] = A[v];b[i] = B[v];v = (v * root) % P;}MathsNTTModAny ntt;auto c = ntt.solve(a, b, mod);vector<int> res(P);v = 1;rep(i, 0, c.size()) {res[v] = (res[v] + c[i]) % mod;v = (v * root) % P;}return res;}/*---------------------------------------------------------------------------------------------------∧_∧∧_∧ (´<_` ) Welcome to My Coding Space!( ´_ゝ`) / ⌒i @hamayanhamayan/ \ | |/ / ̄ ̄ ̄ ̄/ |__(__ニつ/ _/ .| .|____\/____/ (u ⊃---------------------------------------------------------------------------------------------------*/int P;//---------------------------------------------------------------------------------------------------void _main() {cin >> P;vector<int> A = { 0 };rep(i, 0, P - 1) {int a; cin >> a;A.push_back(a);}vector<int> B = { 0 };rep(i, 0, P - 1) {int a; cin >> a;B.push_back(a);}auto ans = convolutionMulModP(A, B, P, 998244353);rep(i, 1, P) {if (i != 1) printf(" ");printf("%d", ans[i]);}printf("\n");}