結果

問題 No.931 Multiplicative Convolution
ユーザー はまやんはまやんはまやんはまやん
提出日時 2019-11-24 10:49:19
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 840 ms / 2,000 ms
コード長 7,464 bytes
コンパイル時間 2,747 ms
コンパイル使用メモリ 222,224 KB
実行使用メモリ 22,184 KB
最終ジャッジ日時 2024-10-12 04:16:30
合計ジャッジ時間 8,352 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 214 ms
17,644 KB
testcase_01 AC 207 ms
17,416 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 207 ms
17,652 KB
testcase_04 AC 210 ms
17,656 KB
testcase_05 AC 207 ms
17,536 KB
testcase_06 AC 206 ms
17,464 KB
testcase_07 AC 215 ms
18,032 KB
testcase_08 AC 319 ms
21,344 KB
testcase_09 AC 263 ms
21,200 KB
testcase_10 AC 327 ms
21,992 KB
testcase_11 AC 306 ms
22,184 KB
testcase_12 AC 260 ms
20,348 KB
testcase_13 AC 840 ms
21,844 KB
testcase_14 AC 446 ms
22,048 KB
testcase_15 AC 319 ms
20,552 KB
testcase_16 AC 310 ms
21,480 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
//#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
//---------------------------------------------------------------------------------------------------
#define FOR(i,n) for(int i = 0; i < (n); i++)
#define sz(c) ((int)(c).size())
#define ten(x) ((int)1e##x)
template<class T> T extgcd(T a, T b, T & x, T & y) { for (T u = y = 1, v = x = 0; a;) { T q = b / a; swap(x -= q * u, u); swap(y -= q * v, v); swap(b -= q * a, a); } return b; }
template<class T> T mod_inv(T a, T m) { T x, y; extgcd(a, m, x, y); return (m + x % m) % m; }
ll mod_pow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }
struct MathsNTTModAny {
    template<int mod, int primitive_root>
    class NTT {
    public:
        int get_mod() const { return mod; }
        void _ntt(vector<ll>& a, int sign) {
            const int n = sz(a);
            assert((n ^ (n & -n)) == 0); //n = 2^k

            const int g = 3; //g is primitive root of mod
            int h = (int)mod_pow(g, (mod - 1) / n, mod); // h^n = 1
            if (sign == -1) h = (int)mod_inv(h, mod); //h = h^-1 % mod

            //bit reverse
            int i = 0;
            for (int j = 1; j < n - 1; ++j) {
                for (int k = n >> 1; k > (i ^= k); k >>= 1);
                if (j < i) swap(a[i], a[j]);
            }

            for (int m = 1; m < n; m *= 2) {
                const int m2 = 2 * m;
                const ll base = mod_pow(h, n / m2, mod);
                ll w = 1;
                FOR(x, m) {
                    for (int s = x; s < n; s += m2) {
                        ll u = a[s];
                        ll d = a[s + m] * w % mod;
                        a[s] = u + d;
                        if (a[s] >= mod) a[s] -= mod;
                        a[s + m] = u - d;
                        if (a[s + m] < 0) a[s + m] += mod;
                    }
                    w = w * base % mod;
                }
            }

            for (auto& x : a) if (x < 0) x += mod;
        }
        void ntt(vector<ll> & input) {
            _ntt(input, 1);
        }
        void intt(vector<ll> & input) {
            _ntt(input, -1);
            const int n_inv = mod_inv(sz(input), mod);
            for (auto& x : input) x = x * n_inv % mod;
        }

        vector<ll> convolution(const vector<ll> & a, const vector<ll> & b) {
            int ntt_size = 1;
            while (ntt_size < sz(a) + sz(b)) ntt_size *= 2;

            vector<ll> _a = a, _b = b;
            _a.resize(ntt_size); _b.resize(ntt_size);

            ntt(_a);
            ntt(_b);

            FOR(i, ntt_size) {
                (_a[i] *= _b[i]) %= mod;
            }

            intt(_a);
            return _a;
        }
    };

    ll garner(vector<pair<int,int>> mr, int mod) {
        mr.emplace_back(mod, 0);

        vector<ll> coffs(sz(mr), 1);
        vector<ll> constants(sz(mr), 0);
        FOR(i, sz(mr) - 1) {
            // coffs[i] * v + constants[i] == mr[i].second (mod mr[i].first) を解く
            ll v = (mr[i].second - constants[i]) * mod_inv<ll>(coffs[i], mr[i].first) % mr[i].first;
            if (v < 0) v += mr[i].first;

            for (int j = i + 1; j < sz(mr); j++) {
                (constants[j] += coffs[j] * v) %= mr[j].first;
                (coffs[j] *= mr[i].first) %= mr[j].first;
            }
        }

        return constants[sz(mr) - 1];
    }

    typedef NTT<167772161, 3> NTT_1;
    typedef NTT<469762049, 3> NTT_2;
    typedef NTT<1224736769, 3> NTT_3;

    vector<ll> solve(vector<ll> a, vector<ll> b, int mod = 1000000007) {
        for (auto& x : a) x %= mod;
        for (auto& x : b) x %= mod;

        NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;
        assert(ntt1.get_mod() < ntt2.get_mod() && ntt2.get_mod() < ntt3.get_mod());
        auto x = ntt1.convolution(a, b);
        auto y = ntt2.convolution(a, b);
        auto z = ntt3.convolution(a, b);

        const ll m1 = ntt1.get_mod(), m2 = ntt2.get_mod(), m3 = ntt3.get_mod();
        const ll m1_inv_m2 = mod_inv<ll>(m1, m2);
        const ll m12_inv_m3 = mod_inv<ll>(m1 * m2, m3);
        const ll m12_mod = m1 * m2 % mod;
        vector<ll> ret(sz(x));
        FOR(i, sz(x)) {
            ll v1 = (y[i] - x[i]) * m1_inv_m2 % m2;
            if (v1 < 0) v1 += m2;
            ll v2 = (z[i] - (x[i] + m1 * v1) % m3) * m12_inv_m3 % m3;
            if (v2 < 0) v2 += m3;
            ll constants3 = (x[i] + m1 * v1 + m12_mod * v2) % mod;
            if (constants3 < 0) constants3 += mod;
            ret[i] = constants3;
        }

        return ret;
    }

    vector<int> solve(vector<int> a, vector<int> b, int mod = 1000000007) {
        vector<ll> x(all(a));
        vector<ll> y(all(b));

        auto z = solve(x, y, mod);
        vector<int> res;
        fore(aa, z) res.push_back(aa % mod);

        return res;
    }
};
// return primitive root of P
ll get_root(ll p) {
	for (int i = 2; i < p; i++) {
		set<int> S;
		int x = 1, j;
		while (1) {
			if (S.size() == p - 1) return i;
			if (S.count(x)) break;
			S.insert(x);
			x = x * i % p;
		}

	}
	assert(0);
}
// C[k] = sum_{1<=i,j<P and k=(i*j)modP}A[i]B[j]
// https://yukicoder.me/problems/no/931
vector<int> convolutionMulModP(vector<int> A, vector<int> B, int P, int mod) {
	if (P == 2) return { 0, (int)((1LL * A[1] * B[1]) % mod) };

	ll root = get_root(P);
	vector<ll> a(1 << 17), b(1 << 17);
	ll v = 1;
	rep(i, 0, P - 1) {
		a[i] = A[v];
		b[i] = B[v];
		v = (v * root) % P;
	}

	MathsNTTModAny ntt;
	auto c = ntt.solve(a, b, mod);

	vector<int> res(P);
	v = 1;
	rep(i, 0, c.size()) {
		res[v] = (res[v] + c[i]) % mod;
		v = (v * root) % P;
	}
	return res;
}
/*---------------------------------------------------------------------------------------------------
            ∧_∧
      ∧_∧  (´<_` )  Welcome to My Coding Space!
     ( ´_ゝ`) /  ⌒i     @hamayanhamayan
    /   \     | |
    /   / ̄ ̄ ̄ ̄/  |
  __(__ニつ/     _/ .| .|____
     \/____/ (u ⊃
---------------------------------------------------------------------------------------------------*/



















int P;
//---------------------------------------------------------------------------------------------------
void _main() {
	cin >> P;
	
	vector<int> A = { 0 };
	rep(i, 0, P - 1) {
		int a; cin >> a;
		A.push_back(a);
	}

	vector<int> B = { 0 };
	rep(i, 0, P - 1) {
		int a; cin >> a;
		B.push_back(a);
	}

	auto ans = convolutionMulModP(A, B, P, 998244353);
	rep(i, 1, P) {
		if (i != 1) printf(" ");
		printf("%d", ans[i]);
	}
	printf("\n");
}





0