結果

問題 No.936 Are
ユーザー hitonanodehitonanode
提出日時 2019-11-29 23:08:55
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,374 bytes
コンパイル時間 2,481 ms
コンパイル使用メモリ 197,816 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-11-21 00:28:28
合計ジャッジ時間 12,744 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 AC 934 ms
6,816 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 AC 4 ms
6,816 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define POW2(n) (1LL << (n))
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
///// This part below is only for debug, not used /////
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
///// END /////
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/

constexpr lint MOD = 1000000007;
template <int mod>
struct ModInt
{
    using lint = long long;
    int val;
    constexpr ModInt() : val(0) {}
    constexpr void _setval(lint v) { v = (v % mod) + mod; val = v >= mod ? v - mod : v; }
    constexpr ModInt(lint v) { _setval(v); }
    constexpr ModInt operator+(const ModInt &x) const { return ModInt((lint)val + x.val); }
    constexpr ModInt operator-(const ModInt &x) const { return ModInt((lint)val - x.val); }
    constexpr ModInt operator*(const ModInt &x) const { return ModInt((lint)val * x.val); }
    constexpr ModInt operator/(const ModInt &x) const { return ModInt((lint)val * x.inv()); }
    constexpr ModInt operator-() const { return ModInt(-val); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a % mod + x.val); }
    friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a % mod - x.val); }
    friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a % mod * x.val); }
    friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a % mod * x.inv()); }
    constexpr bool operator==(const ModInt &x) { return val == x.val; }
    constexpr bool operator!=(const ModInt &x) { return val != x.val; }
    friend istream &operator>>(istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; }
    friend ostream &operator<<(ostream &os, const ModInt &x) { os << x.val;  return os; }

    constexpr lint power(lint n) const {
        lint ans = 1, tmp = this->val;
        while (n) {
            if (n & 1) ans = ans * tmp % mod;
            tmp = tmp * tmp % mod;
            n /= 2;
        }
        return ans;
    }
    constexpr lint inv() const { return this->power(mod - 2); }
    constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); }
    constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; }

    inline ModInt fac() const {
        static vector<ModInt> facs;
        int l0 = facs.size();
        if (l0 > this->val) return facs[this->val];

        facs.resize(this->val + 1);
        for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i));
        return facs[this->val];
    }

    ModInt doublefac() const {
        lint k = (this->val + 1) / 2;
        if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac();
        else return ModInt(k).fac() * ModInt(2).power(k);
    }

    ModInt nCr(const ModInt &r) const {
        if (this->val < r.val) return ModInt(0);
        return this->fac() / ((*this - r).fac() * r.fac());
    }
};
using mint = ModInt<MOD>;

bool ch(int i, int j, int k, int l)
{
    if (k * l == 0 and (i + k + l == 5 or j + k + l == 5)) return false;
    return true;
}

int main()
{
    int N, K;
    cin >> N >> K;
    int L1, R1, L2, R2;
    cin >> L1 >> R1 >> L2 >> R2;
    vector<vector<vector<vector<mint>>>> dp;
    ndarray(dp, 5, 5, 5, 5);
    dp[L1][R1][L2][R2] = 1;
    mint ret = 0;
    while (K--)
    {
        vector<vector<vector<vector<mint>>>> dpnxt;
        ndarray(dpnxt, 5, 5, 5, 5);
        if (N == 0)
        {
            // 先手
            REP(i, 5) REP(j, 5) REP(k, 5) REP(l, 5)
            {
                REP(s, 5) REP(t, 5) if (s + t > 0 and (s + t == i + j or s + t == i + j - 5) and (s != i and s != j))
                {
                    dpnxt[s][t][k][l] += dp[i][j][k][l];
                }
                if (k and i) dpnxt[i][j][(k + i) % 5][l] += dp[i][j][k][l];
                if (k and j) dpnxt[i][j][(k + j) % 5][l] += dp[i][j][k][l];
                if (l and i) dpnxt[i][j][k][(l + i) % 5] += dp[i][j][k][l];
                if (l and j) dpnxt[i][j][k][(l + j) % 5] += dp[i][j][k][l];
            }
            REP(i, 5) REP(j, 5)
            {
                ret += dpnxt[i][j][0][0];
                dpnxt[i][j][0][0] = 0;
            }
        }
        else
        {
            REP(i, 5) REP(j, 5) REP(k, 5) REP(l, 5)
            {
                if (i * j == 0 and (i + j + k == 5 or i + j + l == 5)) // Takahashiの勝ちで🔚
                {
                    continue;
                }
                if (k + l == 1) // Takahashiの負けが確定している
                {
                    if (i == 3 and j == 3)
                    {
                        dpnxt[3][4][k][l] += dp[i][j][k][l];
                        dpnxt[4][3][k][l] += dp[i][j][k][l];
                        continue;
                    }
                    if (i == 4 and j == 4)
                    {
                        dpnxt[0][4][k][l] += dp[i][j][k][l];
                        dpnxt[4][0][k][l] += dp[i][j][k][l];
                        continue;
                    }
                }
                REP(s, 5) REP(t, 5) if (s + t and (s + t == k + l or s + t == k + l - 5) and (s != k and s != l))
                {
                    if (ch(i, j ,s, t)) dpnxt[i][j][s][t] += dp[i][j][k][l];
                }
                if (i and k and ch((i + k) % 5, j, k, l)) dpnxt[(i + k) % 5][j][k][l] += dp[i][j][k][l];
                if (i and l and ch((i + l) % 5, j, k, l)) dpnxt[(i + l) % 5][j][k][l] += dp[i][j][k][l];
                if (j and k and ch(i, (j + k) % 5, k, l)) dpnxt[i][(j + k) % 5][k][l] += dp[i][j][k][l];
                if (j and l and ch(i, (j + l) % 5, k, l)) dpnxt[i][(j + l) % 5][k][l] += dp[i][j][k][l];
            }
            REP(k, 5) REP(l, 5) dpnxt[0][0][k][l] = 0;
        }
        dp = dpnxt;
        N = 1 - N;
    }
    cout << ret << endl;
}
0