結果
| 問題 | No.940 ワープ ε=ε=ε=ε=ε=│;p>д<│ |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-12-03 22:06:59 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 17,929 bytes |
| 記録 | |
| コンパイル時間 | 2,144 ms |
| コンパイル使用メモリ | 187,832 KB |
| 実行使用メモリ | 498,908 KB |
| 最終ジャッジ日時 | 2024-11-28 13:43:01 |
| 合計ジャッジ時間 | 41,837 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 20 TLE * 2 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
// Define
using ll = long long;
using ull = unsigned long long;
using ld = long double;
template <class T> using pvector = vector<pair<T, T>>;
template <class T>
using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;
constexpr const ll dx[4] = {1, 0, -1, 0};
constexpr const ll dy[4] = {0, 1, 0, -1};
constexpr const ll MOD = 1e9 + 7;
constexpr const ll mod = 998244353;
constexpr const ll INF = 1LL << 60;
constexpr const ll inf = 1 << 30;
constexpr const char rt = '\n';
constexpr const char sp = ' ';
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define eb emplase_back
#define elif else if
#define all(a, v, ...) \
([&](decltype((v)) w) { return (a)(begin(w), end(w), ##__VA_ARGS__); })(v)
#define fi first
#define se second
template <class T> bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T> bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
// Debug
#define debug(...) \
{ \
cerr << __LINE__ << ": " << #__VA_ARGS__ << " = "; \
for (auto &&X : {__VA_ARGS__}) cerr << "[" << X << "] "; \
cerr << rt; \
}
#define dump(a, h, w) \
{ \
cerr << __LINE__ << ": " << #a << " = [" << rt; \
rep(i, h) { \
rep(j, w) cerr << a[i][j] << sp; \
cerr << rt; \
} \
cerr << "]" << rt; \
}
#define vdump(a, n) \
{ \
cerr << __LINE__ << ": " << #a << " = ["; \
rep(i, n) cerr << a[i] << (i == n - 1 ? rt : sp); \
cerr << "]" << rt; \
}
// Loop
#define inc(i, a, n) for (ll i = (a), _##i = (n); i <= _##i; ++i)
#define dec(i, a, n) for (ll i = (a), _##i = (n); i >= _##i; --i)
#define rep(i, n) for (ll i = 0, _##i = (n); i < _##i; ++i)
#define each(i, a) for (auto &&i : a)
// Stream
#define fout(n) cout << fixed << setprecision(n)
struct io {
io() { cin.tie(nullptr), ios::sync_with_stdio(false); }
} io;
// Speed
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// Math
inline constexpr ll gcd(const ll a, const ll b) {
return b ? gcd(b, a % b) : a;
}
inline constexpr ll lcm(const ll a, const ll b) { return a / gcd(a, b) * b; }
inline constexpr ll modulo(const ll n, const ll m = MOD) {
ll k = n % m;
return k + m * (k < 0);
}
inline constexpr ll chmod(ll &n, const ll m = MOD) {
n %= m;
return n += m * (n < 0);
}
inline constexpr ll mpow(ll a, ll n, const ll m = MOD) {
ll r = 1;
rep(i, 64) {
if (n & (1LL << i)) r *= a;
chmod(r, m);
a *= a;
chmod(a, m);
}
return r;
}
inline ll inv(const ll n, const ll m = MOD) {
ll a = n, b = m, x = 1, y = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
x -= t * y;
swap(x, y);
}
return modulo(x, m);
}
template <ull mod = MOD> struct mi {
inline constexpr ll modulo(const ll n, const ll m) const noexcept {
ll k = n % m;
return k + m * (k < 0);
}
ll num;
inline constexpr mi() noexcept : num() { num = 0; }
inline constexpr mi(const int n) noexcept : num() { num = modulo(n, mod); }
inline constexpr mi(const ll n) noexcept : num() { num = modulo(n, mod); }
inline constexpr mi<mod> inv() const noexcept {
ll a = num, b = mod, x = 1, y = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
x -= t * y;
swap(x, y);
}
return mi<mod>(x);
}
inline constexpr mi<mod> inv(ll n) const noexcept {
ll a = n, b = mod, x = 1, y = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
x -= t * y;
swap(x, y);
}
return mi<mod>(x);
}
inline constexpr mi<mod> inv(const mi<mod> m) const noexcept {
return inv(m.num);
}
inline constexpr mi<mod> operator+() const noexcept { return mi(num); }
inline constexpr mi<mod> operator+(const int n) const noexcept {
return mi<mod>(num + n);
}
inline constexpr mi<mod> operator+(const ll n) const noexcept {
return mi<mod>(num + n);
}
inline constexpr mi<mod> operator+(const mi<mod> m) const noexcept {
return mi<mod>(num + m.num);
}
inline constexpr mi<mod> operator-() const noexcept { return -num; }
inline constexpr mi<mod> operator-(const int n) const noexcept {
return mi<mod>(num - n);
}
inline constexpr mi<mod> operator-(const ll n) const noexcept {
return mi<mod>(num - n);
}
inline constexpr mi<mod> operator-(const mi<mod> m) const noexcept {
return mi<mod>(num - m.num);
}
inline constexpr mi<mod> operator*(const int n) const noexcept {
return mi<mod>(num * n);
}
inline constexpr mi<mod> operator*(const ll n) const noexcept {
return mi<mod>(num * n);
}
inline constexpr mi<mod> operator*(const mi<mod> m) const noexcept {
return mi<mod>(num * m);
}
inline constexpr mi<mod> operator/(const int n) const noexcept {
return mi<mod>(num * (ll) inv(n));
}
inline constexpr mi<mod> operator/(const ll n) const noexcept {
return mi<mod>(num * (ll) inv(n));
}
inline constexpr mi<mod> operator/(const mi<mod> m) const noexcept {
return mi<mod>(num * (ll) inv(m));
}
inline constexpr mi<mod> &operator=(const int n) noexcept {
num = modulo(n, mod);
return *this;
}
inline constexpr mi<mod> &operator=(const ll n) noexcept {
num = modulo(n, mod);
return *this;
}
inline constexpr mi<mod> &operator=(const mi<mod> m) noexcept {
num = m.num;
return *this;
}
inline constexpr mi<mod> &operator+=(const int n) noexcept {
num = modulo(num + n, mod);
return *this;
}
inline constexpr mi<mod> &operator+=(const ll n) noexcept {
num = modulo(num + n, mod);
return *this;
}
inline constexpr mi<mod> &operator+=(const mi<mod> m) noexcept {
num = modulo(num + m.num, mod);
return *this;
}
inline constexpr mi<mod> &operator++() noexcept {
num = modulo(num + 1, mod);
return *this;
}
inline constexpr mi<mod> operator++(int) noexcept {
mi &pre = *this;
num = modulo(num + 1, mod);
return pre;
}
inline constexpr mi<mod> &operator-=(const int n) noexcept {
num = modulo(num - n, mod);
return *this;
}
inline constexpr mi<mod> &operator-=(const ll n) noexcept {
num = modulo(num - n, mod);
return *this;
}
inline constexpr mi<mod> &operator-=(const mi<mod> m) noexcept {
num = modulo(num - m.num, mod);
return *this;
}
inline constexpr mi<mod> &operator--() noexcept {
num = modulo(num - 1, mod);
return *this;
}
inline constexpr mi<mod> operator--(int) noexcept {
mi &pre = *this;
num = modulo(num - 1, mod);
return pre;
}
inline constexpr mi<mod> &operator*=(const int n) noexcept {
num = modulo(num * n, mod);
return *this;
}
inline constexpr mi<mod> &operator*=(const ll n) noexcept {
num = modulo(num * n, mod);
return *this;
}
inline constexpr mi<mod> &operator*=(const mi<mod> m) noexcept {
num = modulo(num * m.num, mod);
return *this;
}
inline constexpr mi<mod> &operator/=(const int n) noexcept {
num = modulo(num * (ll) inv(n), mod);
return *this;
}
inline constexpr mi<mod> &operator/=(const ll n) noexcept {
num = modulo(num * (ll) inv(n), mod);
return *this;
}
inline constexpr mi<mod> &operator/=(const mi<mod> m) noexcept {
num = modulo(num * (ll) inv(m), mod);
return *this;
}
inline constexpr bool operator==(const int n) const noexcept {
return num == modulo(n, mod);
}
inline constexpr bool operator==(const ll n) const noexcept {
return num == modulo(n, mod);
}
inline constexpr bool operator==(const mi<mod> m) const noexcept {
return num == m.num;
}
inline constexpr bool operator!=(const int n) const noexcept {
return num != modulo(n, mod);
}
inline constexpr bool operator!=(const ll n) const noexcept {
return num != modulo(n, mod);
}
inline constexpr bool operator!=(const mi<mod> m) const noexcept {
return num != m.num;
}
constexpr operator int() const noexcept { return num; }
constexpr operator ll() const noexcept { return num; }
friend std::istream &operator>>(std::istream &, const mi<> &);
friend std::ostream &operator<<(std::ostream &, const mi<> &);
};
template <ull mod = MOD>
inline constexpr mi<mod> operator+(const int n, const mi<mod> m) noexcept {
return mi<mod>(n + m.num);
}
template <ull mod = MOD>
inline constexpr mi<mod> operator+(const ll n, const mi<mod> m) noexcept {
return mi<mod>(n + m.num);
}
template <ull mod = MOD>
inline constexpr mi<mod> operator-(const int n, const mi<mod> m) noexcept {
return mi<mod>(n - m.num);
}
template <ull mod = MOD>
inline constexpr mi<mod> operator-(const ll n, const mi<mod> m) noexcept {
return mi<mod>(n - m.num);
}
template <ull mod = MOD>
inline constexpr mi<mod> operator*(const int n, const mi<mod> m) noexcept {
return mi<mod>(n * m.num);
}
template <ull mod = MOD>
inline constexpr mi<mod> operator*(const ll n, const mi<mod> m) noexcept {
return mi<mod>(n * m.num);
}
template <ull mod = MOD>
inline constexpr mi<mod> operator/(const int n, const mi<mod> m) noexcept {
return mi<mod>(n * (ll) m.inv());
}
template <ull mod = MOD>
inline constexpr mi<mod> operator/(const ll n, const mi<mod> m) noexcept {
return mi<mod>(n * (ll) m.inv());
}
inline constexpr mi<MOD> operator""_m(ull n) { return mi<MOD>((ll) n); }
template <ull mod = MOD>
inline constexpr mi<mod> pow(mi<mod> m, ll n) noexcept {
mi<mod> r = mi<mod>(1);
rep(i, 64) {
if (n & (1LL << i)) r *= m;
m *= m;
}
return r;
}
template <ull mod> istream &operator>>(istream &is, mi<mod> &m) {
is >> m.num;
return is;
}
template <ull mod> ostream &operator<<(ostream &is, mi<mod> &m) {
is << (ll) m;
return is;
}
template <ull mod = MOD> struct modmath {
ll max;
vector<mi<mod>> fac, inv;
modmath() : max(1 << 20), fac(max + 1), inv(max + 1) {
fac[0] = mi<mod>(1);
rep(i, max) fac[i + 1] = fac[i] * (i + 1);
inv[max] = fac[max].inv();
dec(i, max - 1, 0) inv[i] = inv[i + 1] * (i + 1);
}
modmath(ll n) : max(n), fac(n + 1), inv(n + 1) {
fac[0] = 1;
rep(i, n) fac[i + 1] = fac[i] * (i + 1);
inv[n] = 1 / fac[n];
dec(i, n - 1, 0) inv[i] = inv[i + 1] * (i + 1);
}
inline mi<mod> fact(ll n) {
if (n < 0) return mi<mod>(0);
return fac[n];
}
inline mi<mod> perm(ll n, ll r) {
if (r < 0 || n < r) return mi<mod>(0);
return fac[n] * inv[n - r];
}
inline mi<mod> comb(ll n, ll r) {
if (r < 0 || n < r) return mi<mod>(0);
return fac[n] * inv[r] * inv[n - r];
}
inline mi<mod> nHr(ll n, ll r) { return comb(n + r - 1, n - 1); }
};
namespace FastFourierTransform {
using real = long double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const {
return C(x * c.x - y * c.y, x * c.y + y * c.x);
}
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};
void ensure_base(int nbase) {
if (nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for (int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while (base < nbase) {
real angle = PI * 2.0 / (1 << (base + 1));
for (int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector<C> &a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; i++) {
if (i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for (int k = 1; k < n; k <<= 1) {
for (int i = 0; i < n; i += 2 * k) {
for (int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector<int64_t> multiply(const vector<int> &a, const vector<int> &b) {
int need = (int) a.size() + (int) b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for (int i = 0; i < sz; i++) {
int x = (i < (int) a.size() ? a[i] : 0);
int y = (i < (int) b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for (int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for (int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector<int64_t> ret(need);
for (int i = 0; i < need; i++) {
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
}; // namespace FastFourierTransform
template <typename T> struct ArbitraryModConvolution {
using real = FastFourierTransform::real;
using C = FastFourierTransform::C;
ArbitraryModConvolution() = default;
vector<T> multiply(const vector<T> &a, const vector<T> &b, int need = -1) {
if (need == -1) need = a.size() + b.size() - 1;
int nbase = 0;
while ((1 << nbase) < need) nbase++;
FastFourierTransform::ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for (int i = 0; i < a.size(); i++) {
fa[i] = C(a[i].num & ((1 << 15) - 1), a[i].num >> 15);
}
fft(fa, sz);
vector<C> fb(sz);
if (a == b) {
fb = fa;
} else {
for (int i = 0; i < b.size(); i++) {
fb[i] = C(b[i].num & ((1 << 15) - 1), b[i].num >> 15);
}
fft(fb, sz);
}
real ratio = 0.25 / sz;
C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
for (int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C a1 = (fa[i] + fa[j].conj());
C a2 = (fa[i] - fa[j].conj()) * r2;
C b1 = (fb[i] + fb[j].conj()) * r3;
C b2 = (fb[i] - fb[j].conj()) * r4;
if (i != j) {
C c1 = (fa[j] + fa[i].conj());
C c2 = (fa[j] - fa[i].conj()) * r2;
C d1 = (fb[j] + fb[i].conj()) * r3;
C d2 = (fb[j] - fb[i].conj()) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector<T> ret(need);
for (int i = 0; i < need; i++) {
ll aa = llround(fa[i].x);
ll bb = llround(fb[i].x);
ll cc = llround(fa[i].y);
aa = T(aa).num, bb = T(bb).num, cc = T(cc).num;
ret[i] = aa + (bb << 15) + (cc << 30);
}
return ret;
}
};
// thanks to ei1333
signed main() {
ll n, x, y, z;
cin >> x >> y >> z;
n = x + y + z;
if (n == 0) return puts("1") & 0;
mi<> res;
vector<mi<>> a(n), b(n), A035317;
modmath<> m(1 << 21);
#define M(i) \
(m.comb(x + i - 1, x) * m.comb(y + i - 1, y) * m.comb(z + i - 1, z))
rep(i, n) a[i] = (i & 1 ? -1 : 1) / m.fact(i);
rep(i, n) b[i] = m.fact(n - i);
ArbitraryModConvolution<mi<>> FFT;
A035317 = FFT.multiply(a, b);
rep(i, n) res += M(n - i) * A035317[i] / m.fact(n - i);
cout << res << rt;
}
// -g -D_GLIBCXX_DEBUG -fsanitize=undefined