結果

問題 No.955 ax^2+bx+c=0
ユーザー LeonardoneLeonardone
提出日時 2019-12-18 03:39:54
言語 Haskell
(9.10.1)
結果
WA  
実行時間 -
コード長 959 bytes
コンパイル時間 1,269 ms
コンパイル使用メモリ 172,288 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-07-07 00:23:58
合計ジャッジ時間 3,596 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 67 WA * 55
権限があれば一括ダウンロードができます
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main             ( Main.hs, Main.o )

Main.hs:4:75: warning: [GHC-63394] [-Wx-partial]
    In the use of ‘head’
    (imported from Prelude, but defined in GHC.List):
    "This is a partial function, it throws an error on empty lists. Use pattern matching or Data.List.uncons instead. Consider refactoring to use Data.List.NonEmpty."
  |
4 | main = interact $ unlines . concat . zipWith ($) [return . show . floor . head, map show . tail] . repeat . solve . map read . words
  |                                                                           ^^^^

Main.hs:4:92: warning: [GHC-63394] [-Wx-partial]
    In the use of ‘tail’
    (imported from Prelude, but defined in GHC.List):
    "This is a partial function, it throws an error on empty lists. Replace it with drop 1, or use pattern matching or Data.List.uncons instead. Consider refactoring to use Data.List.NonEmpty."
  |
4 | main = interact $ unlines . concat . zipWith ($) [return . show . floor . head, map show . tail] . repeat . solve . map read . words
  |                                                                                            ^^^^
[2 of 2] Linking a.out

ソースコード

diff #

-- Try yukicoder
-- author: Leonardone @ NEETSDKASU

main = interact $ unlines . concat . zipWith ($) [return . show . floor . head, map show . tail] . repeat . solve . map read . words

solve (0:0:0:_) = [-1]
solve (0:0:_:_) = [0]
solve (0:b:c:_) = [2, fromIntegral (-c) / fromIntegral b]
solve (a:0:0:_) = [1, 0]
solve (a:0:c:_) | e < 0     = [0]
                | otherwise = [2, - sqrt e, sqrt e]
                where e = fromIntegral (-c) / fromIntegral a
solve (a:b:0:_) = [2, min 0 x, max 0 x]
                where x = fromIntegral (-b) / fromIntegral a
solve (a:b:c:_) | d < 0  = [0]
                | d == 0 = [1, fromIntegral (-b) / fromIntegral (2*a)]
                | d > 0  = [2, min y z, max y z]
                where d = b * b - 4 * a * c
                      y = (fromIntegral (-b) + sqrt (fromIntegral d)) / fromIntegral (2*a)
                      z = (fromIntegral (-b) - sqrt (fromIntegral d)) / fromIntegral (2*a)
solve _ = undefined
0