結果

問題 No.856 増える演算
ユーザー ianCK
提出日時 2020-01-01 03:52:35
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 101 ms / 3,153 ms
コード長 2,284 bytes
コンパイル時間 1,059 ms
コンパイル使用メモリ 72,572 KB
実行使用メモリ 8,448 KB
最終ジャッジ日時 2024-11-21 05:11:02
合計ジャッジ時間 6,838 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 80
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:64:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   64 |         scanf("%d", &n);
      |         ~~~~~^~~~~~~~~~
main.cpp:65:43: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   65 |         for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
      |                                      ~~~~~^~~~~~~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

#include <stdio.h>
#include <vector>
#include <math.h>
#include <complex>
using namespace std;
typedef long long int ll;
constexpr int kMod = int(1E9 + 7), kN = 262144;
constexpr double pi = acos(-1);
constexpr complex<double> one = complex<double>(1, 0), half = complex<double>(0.5, 0);
ll Pow(ll a, ll b) {
ll ans = 1;
while (b) {
if (b & 1) ans = ans * a % kMod;
a = a * a % kMod;
b >>= 1;
}
return ans;
}
void FFT(vector<complex<double>> &v, bool on, int sz) {
complex<double> wn, u, t, w, inv(1.0 / sz, 0);
for (int i = 1, j = sz >> 1, k; i < (sz - 1); i++) {
if (i < j) swap(v[i], v[j]);
k = sz >> 1;
while (j & k) {
j ^= k;
k >>= 1;
}
j |= k;
}
for (int i = 2; i <= sz; i <<= 1) {
wn = on ? complex<double>(cos(2 * pi / i), -sin(2 * pi / i)) : complex<double>(cos(2 * pi / i), sin(2 * pi / i));
for (int j = 0; j < sz; j += i) {
w = 1;
for (int k = j; k < j + (i >> 1); k++) {
u = v[k];
t = w * v[k + (i >> 1)];
v[k] = u + t;
v[k + (i >> 1)] = u - t;
w *= wn;
}
}
}
if (on) for (int i = 0; i < sz; i++) v[i] *= inv;
}
int a[kN];
ll ts[kN];
bool Lesser(int ax, int ay, int bx, int by) {
long double left = (ax + ay), right = (bx + by);
left *= pow(ax, ay), right *= pow(bx, by);
return left > right;
}
int main() {
int n, l, r, nm;
ll ans = 1, tmp = 1;
vector<complex<double>> v(kN);
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
ts[0] = 0;
for (int i = 1; i <= n; i++) ts[i] = (ts[i - 1] + a[i]) % (kMod - 1);
for (int i = 1; i <= n; i++) v[a[i]] += one;
FFT(v, false, kN);
for (int i = 0; i < kN; i++) v[i] = v[i] * v[i];
FFT(v, true, kN);
for (int i = 1; i <= n; i++) v[a[i] << 1] -= one;
for (int i = 1; i < kN; i++) v[i] *= half;
for (int i = 1; i < kN; i++) tmp = tmp * Pow(i, ll(v[i].real() + 0.5)) % kMod;
for (int i = 1; i <= n; i++) ans = ans * Pow(a[i], ts[n] - ts[i] + kMod - 1) % kMod;
l = a[n - 1], r = a[n], nm = a[n];
for (int i = n - 2; i >= 1; i--) {
nm = min(nm, a[i + 1]);
if (Lesser(l, r, a[i], nm)) {
l = a[i];
r = nm;
}
}
ans = ans * tmp % kMod;
printf("%lld\n", ans * Pow((l + r) * Pow(l, r) % kMod, kMod - 2) % kMod);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0