結果
問題 | No.856 増える演算 |
ユーザー |
|
提出日時 | 2020-01-01 03:52:35 |
言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 101 ms / 3,153 ms |
コード長 | 2,284 bytes |
コンパイル時間 | 1,059 ms |
コンパイル使用メモリ | 72,572 KB |
実行使用メモリ | 8,448 KB |
最終ジャッジ日時 | 2024-11-21 05:11:02 |
合計ジャッジ時間 | 6,838 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 80 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:64:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 64 | scanf("%d", &n); | ~~~~~^~~~~~~~~~ main.cpp:65:43: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 65 | for (int i = 1; i <= n; i++) scanf("%d", &a[i]); | ~~~~~^~~~~~~~~~~~~
ソースコード
#include <stdio.h>#include <vector>#include <math.h>#include <complex>using namespace std;typedef long long int ll;constexpr int kMod = int(1E9 + 7), kN = 262144;constexpr double pi = acos(-1);constexpr complex<double> one = complex<double>(1, 0), half = complex<double>(0.5, 0);ll Pow(ll a, ll b) {ll ans = 1;while (b) {if (b & 1) ans = ans * a % kMod;a = a * a % kMod;b >>= 1;}return ans;}void FFT(vector<complex<double>> &v, bool on, int sz) {complex<double> wn, u, t, w, inv(1.0 / sz, 0);for (int i = 1, j = sz >> 1, k; i < (sz - 1); i++) {if (i < j) swap(v[i], v[j]);k = sz >> 1;while (j & k) {j ^= k;k >>= 1;}j |= k;}for (int i = 2; i <= sz; i <<= 1) {wn = on ? complex<double>(cos(2 * pi / i), -sin(2 * pi / i)) : complex<double>(cos(2 * pi / i), sin(2 * pi / i));for (int j = 0; j < sz; j += i) {w = 1;for (int k = j; k < j + (i >> 1); k++) {u = v[k];t = w * v[k + (i >> 1)];v[k] = u + t;v[k + (i >> 1)] = u - t;w *= wn;}}}if (on) for (int i = 0; i < sz; i++) v[i] *= inv;}int a[kN];ll ts[kN];bool Lesser(int ax, int ay, int bx, int by) {long double left = (ax + ay), right = (bx + by);left *= pow(ax, ay), right *= pow(bx, by);return left > right;}int main() {int n, l, r, nm;ll ans = 1, tmp = 1;vector<complex<double>> v(kN);scanf("%d", &n);for (int i = 1; i <= n; i++) scanf("%d", &a[i]);ts[0] = 0;for (int i = 1; i <= n; i++) ts[i] = (ts[i - 1] + a[i]) % (kMod - 1);for (int i = 1; i <= n; i++) v[a[i]] += one;FFT(v, false, kN);for (int i = 0; i < kN; i++) v[i] = v[i] * v[i];FFT(v, true, kN);for (int i = 1; i <= n; i++) v[a[i] << 1] -= one;for (int i = 1; i < kN; i++) v[i] *= half;for (int i = 1; i < kN; i++) tmp = tmp * Pow(i, ll(v[i].real() + 0.5)) % kMod;for (int i = 1; i <= n; i++) ans = ans * Pow(a[i], ts[n] - ts[i] + kMod - 1) % kMod;l = a[n - 1], r = a[n], nm = a[n];for (int i = n - 2; i >= 1; i--) {nm = min(nm, a[i + 1]);if (Lesser(l, r, a[i], nm)) {l = a[i];r = nm;}}ans = ans * tmp % kMod;printf("%lld\n", ans * Pow((l + r) * Pow(l, r) % kMod, kMod - 2) % kMod);}