結果
問題 | No.876 Range Compress Query |
ユーザー | naoya_t |
提出日時 | 2020-01-03 11:07:39 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 96 ms / 2,000 ms |
コード長 | 10,159 bytes |
コンパイル時間 | 1,760 ms |
コンパイル使用メモリ | 175,624 KB |
実行使用メモリ | 10,240 KB |
最終ジャッジ日時 | 2024-11-22 18:58:01 |
合計ジャッジ時間 | 3,536 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 92 ms
9,728 KB |
testcase_12 | AC | 77 ms
9,344 KB |
testcase_13 | AC | 87 ms
9,600 KB |
testcase_14 | AC | 89 ms
9,728 KB |
testcase_15 | AC | 67 ms
9,856 KB |
testcase_16 | AC | 92 ms
10,240 KB |
testcase_17 | AC | 96 ms
10,240 KB |
testcase_18 | AC | 95 ms
10,240 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define NDEBUG #include <cassert> typedef long long ll; typedef long double Double; typedef unsigned long long ull; typedef pair<int,int> ii; typedef pair<ll,ll> llll; typedef pair<double,double> dd; typedef vector<int> vi; typedef vector<vector<int>> vvi; typedef vector<ii> vii; typedef vector<vector<ii>> vvii; typedef vector<ll> vll; typedef vector<vector<ll>> vvll; typedef vector<llll> vllll; typedef vector<bool> vb; typedef vector<string> vs; typedef vector<double> vd; typedef vector<long double> vD; #define sz(a) int((a).size()) #define pb push_back #define eb emplace_back #define FOR(var,from,to) for(int var=(from);var<=(to);++var) #define rep(var,n) for(int var=0;var<(n);++var) #define rep1(var,n) for(int var=1;var<=(n);++var) #define repC2(vari,varj,n) for(int vari=0;vari<(n)-1;++vari)for(int varj=vari+1;varj<(n);++varj) #define repC3(vari,varj,vark,n) for(int vari=0;vari<(n)-2;++vari)for(int varj=vari+1;varj<(n)-1;++varj)for(int vark=varj+1;vark<(n);++vark) #define ALL(c) (c).begin(),(c).end() #define RALL(c) (c).rbegin(),(c).rend() #define tr(i,c) for(auto i=(c).begin(); i!=(c).end(); ++i) #define found(s,e) ((s).find(e)!=(s).end()) #define mset(arr,val) memset(arr,val,sizeof(arr)) #define mid(x,y) ((x)+((y)-(x))/2) #define IN(x,a,b) ((a)<=(x)&&(x)<=(b)) #define cons make_pair #define clamp(v,lo,hi) min(max(v,lo),hi) template<typename T1, typename T2> inline void amin(T1 & a, T2 const & b) { if (a>b) a=b; } template<typename T1, typename T2> inline void amax(T1 & a, T2 const & b) { if (a<b) a=b; } template<typename X, typename T> auto vectors(X x, T a) { return vector<T>(x, a); } template<typename X, typename Y, typename Z, typename... Zs> auto vectors(X x, Y y, Z z, Zs... zs) { auto cont = vectors(y, z, zs...); return vector<decltype(cont)>(x, cont); } inline ll square(ll x) { return x * x; } inline ll gcd(ll a, ll b) { while(a) swap(a, b%=a); return b; } template <typename T> inline T mod(T a, T b) { return ((a % b) + b) % b; } template <typename T> int find_left(vector<T>& v, T elem) { return (int)(upper_bound(v.begin(), v.end(), elem) - v.begin()) - 1; } template <typename T> int find_right(vector<T>& v, T elem) { return (int)(lower_bound(v.begin(), v.end(), elem) - v.begin()); } const ll MOD=1000000007LL; inline ll ADD(ll x, ll y) { return (x+y) % MOD; } inline ll SUB(ll x, ll y) { return (x-y+MOD) % MOD; } inline ll MUL(ll x, ll y) { return x*y % MOD; } inline ll POW(ll x, ll e) { ll v=1; for(; e; x=MUL(x,x), e>>=1) if (e&1) v = MUL(v,x); return v; } inline ll INV(ll y) { /*assert(y%MOD!=0);*/ return POW(y, MOD-2); } inline ll DIV(ll x, ll y) { return MUL(x, INV(y)); } #define INTSPACE 12 char _buf[INTSPACE*1000000 + 3]; int loadint() { if (fgets(_buf, INTSPACE+3, stdin)==NULL) return 0; return atoi(_buf); } int loadvec(vector<int>& v, int N=-1) { if (N == 0) { v.clear(); return 0; } if (N == -1) { N = loadint(); if (N==0) return 0; } int bufsize = INTSPACE*N + 3; if (fgets(_buf, bufsize, stdin)==NULL) return 0; v.resize(N); int i=0; bool last = false; for (char *p=&_buf[0]; ;) { char *q = p; while (*q > ' ') ++q; if (*q == 0x0D || *q == 0x0A) last = true; *q = 0; v[i++] = atoi(p); if (last || i == N) break; p = q+1; } return i; } void read_cr() { fgets(_buf, 256, stdin); } void horizontal(vector<int>& v) { int L = v.size(); for (int i=0; i<L; ++i) { printf("%d%c", v[i], (i==L-1)?'\n':' '); } } void horizontall(vector<long long>& v) { int L = v.size(); for (int i=0; i<L; ++i) { printf("%lld%c", v[i], (i==L-1)?'\n':' '); } } template <typename Elem, typename LazyOperand, typename MERGE_DATA_PROC, typename APPLY_LAZY_PROC, typename MERGE_LAZY_PROC> class LazySegmentTree { public: MERGE_DATA_PROC f; APPLY_LAZY_PROC g; MERGE_LAZY_PROC h; Elem elem_ident; LazyOperand lazy_operand_ident; vector<Elem> elems; vector<LazyOperand> lazy_operands; int n, height; inline void assign_merged_lazy(LazyOperand& dest, LazyOperand x) { dest = h(dest, x); } LazySegmentTree(MERGE_DATA_PROC f, APPLY_LAZY_PROC g, MERGE_LAZY_PROC h, Elem elem_ident, LazyOperand lazy_operand_ident) : f(f), g(g), h(h), elem_ident(elem_ident), lazy_operand_ident(lazy_operand_ident) { } void init(int n_temp) { n = 1; height = 0; while (n < n_temp) { n <<= 1; ++height; } elems.assign(2*n, elem_ident); lazy_operands.assign(2*n, lazy_operand_ident); } void build(const vector<Elem>& v){ int n_temp = v.size(); init(n_temp); rep(i,n_temp) elems[n+i] = v[i]; for (int i=n-1; i>0; --i) { elems[i] = f(elems[i*2], elems[i*2+1]); } } inline Elem reflect(int k){ return (lazy_operands[k] == lazy_operand_ident) ? elems[k] : g(elems[k], lazy_operands[k]); } inline void _eval(int k){ if (lazy_operands[k] != lazy_operand_ident) { assign_merged_lazy(lazy_operands[k*2], lazy_operands[k]); assign_merged_lazy(lazy_operands[k*2+1], lazy_operands[k]); elems[k] = reflect(k); lazy_operands[k] = lazy_operand_ident; } } inline void eval_down(int k) { for (int i=height; i>0; --i) { _eval(k >> i); } } inline void recalc(int k) { while (k >>= 1) { elems[k] = f(reflect(k*2), reflect(k*2+1)); } } void update(int a, int b, LazyOperand x) { a += n; b += n; eval_down(a); eval_down(b-1); for (int l=a,r=b; l<r; l>>=1,r>>=1) { if (l & 1) assign_merged_lazy(lazy_operands[l++], x); if (r & 1) assign_merged_lazy(lazy_operands[--r], x); } recalc(a); recalc(b-1); } void set_val(int a, Elem e) { a += n; eval_down(a); elems[a] = e; lazy_operands[a] = lazy_operand_ident; recalc(a); } Elem query(int a, int b) { a += n; b += n; eval_down(a); eval_down(b-1); Elem vl = elem_ident, vr = elem_ident; for (int l=a,r=b; l<r; l>>=1,r>>=1) { if (l & 1) vl = f(vl, reflect(l++)); if (r & 1) vr = f(reflect(--r), vr); } Elem merged = f(vl, vr); return merged; } void desc() { } }; /*** using ll2 = pair<ll, int>; auto f_sum = [](ll2 a, ll2 b){ return ll2(a.first + b.first, a.second + b.second); }; auto g = [](ll2 a, ll b){ ll p = a.second * b; return ll2(a.first + p, a.second); }; auto h = [](ll a, ll b){ return a+b; }; LazySegmentTree<ll2,ll,decltype(f_sum),decltype(g),decltype(h)> st(f_sum, g, h, ll2(0,0), 0); st.build(vector<ll2>(N, ll2(0, 1))); auto g = [](ll2 a, ll b){ return ll2((a.second % 2) ? a.first^b : a.first, a.second); } auto h = [](ll a, ll b){ return a^b; }; LazySegmentTree<ll,ll,decltype(f_sum),decltype(g),decltype(h)> st(f_sum, g, h, ll2(0,0), 0); st.build(vector<ll>(N, ll2(0,1)); auto g = [](ll2 a, ll b){ ll p = a.second * b; return ll2(p ? p-a.first : a.first, a.second); } auto h = [](ll a, ll b){ return a^b; }; LazySegmentTree<ll,ll,decltype(f_sum),decltype(g),decltype(h)> st(f_sum, g, h, ll2(0,0), 0); st.build(vector<ll>(N, ll2(0,1)); auto f = [](ll a, ll b){ return min(a,b); } auto g = [](ll a, ll b){ return b; } auto h = [](ll a, ll b){ return min(a,b); }; LazySegmentTree<ll,ll,decltype(f),decltype(g),decltype(h)> st(f, g, h, LLONG_MAX, LLONG_MAX); st.build(vector<ll>(N, LLONG_MAX)); auto f = [](ll a, ll b){ return min(a,b); }; auto g = [](ll a, ll b){ return min(a,b); }; auto h = [](ll a, ll b){ return min(a,b); }; LazySegmentTree<ll,ll,decltype(f),decltype(g),decltype(h)> st(f, g, h, LLONG_MAX, LLONG_MAX); st.build(vector<ll>(N, LLONG_MAX)); ***/ template <typename T, int base=0> class fenwick_tree_0 { public: vector<T> x; public: fenwick_tree_0(int n) : x(n+base,0) { } void add(int k, T a) { for (; k<x.size(); k|=k+1) x[k] += a; } T sum(int i, int j) { if (i == base) { T S = 0; for (; j>=0; j=(j&(j+1))-1) S += x[j]; return S; } else { return sum(base, j) - sum(base, i-1); } } }; int main() { int N, Q; scanf("%d %d%*c", &N, &Q); vi a(N); loadvec(a,N); vll al(N); rep(i,N) al[i] = a[i]; auto f = [](ll a, ll b){ return a+b; }; auto g = [](ll a, ll b){ return a+b; }; auto h = [](ll a, ll b){ return a+b; }; LazySegmentTree<ll,ll,decltype(f),decltype(g),decltype(h)> st(f, g, h, 0, 0); st.build(al); vi diff(N-1, 0); rep(i,N-1) { diff[i] = (int)(a[i] != a[i+1]); } fenwick_tree_0<int> ft(N); rep(i,N-1){ ft.add(i, diff[i]); } rep(i,Q){ int op; scanf("%d ", &op); switch (op){ case 1: { int l, r, x; scanf("%d %d %d%*c", &l, &r, &x); --l; st.update(l, r, (ll)x); if (0 <= l-1) { ft.add(l-1, -diff[l-1]); ll u = st.query(l-1,l), v = st.query(l,l+1); diff[l-1] = (int)(u != v); ft.add(l-1, diff[l-1]); } if (r <= N-1) { ft.add(r-1, -diff[r-1]); ll u = st.query(r-1,r), v = st.query(r,r+1); diff[r-1] = (int)(u != v); ft.add(r-1, diff[r-1]); } } break; case 2: { int l, r; scanf("%d %d%*c", &l, &r); --l; --r; printf("%d\n", 1 + ft.sum(l, r-1)); } break; } } return 0; }