結果

問題 No.876 Range Compress Query
ユーザー naoya_tnaoya_t
提出日時 2020-01-03 13:10:35
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 142 ms / 2,000 ms
コード長 11,017 bytes
コンパイル時間 2,015 ms
コンパイル使用メモリ 180,068 KB
実行使用メモリ 13,908 KB
最終ジャッジ日時 2024-05-02 07:13:50
合計ジャッジ時間 4,249 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 3 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 3 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 3 ms
6,940 KB
testcase_11 AC 138 ms
13,908 KB
testcase_12 AC 115 ms
11,976 KB
testcase_13 AC 113 ms
12,324 KB
testcase_14 AC 142 ms
12,264 KB
testcase_15 AC 96 ms
12,652 KB
testcase_16 AC 136 ms
13,128 KB
testcase_17 AC 133 ms
13,216 KB
testcase_18 AC 142 ms
12,772 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

#define NDEBUG
#include <cassert>


typedef long long ll;
typedef long double Double;
typedef unsigned long long ull;
typedef pair<int,int> ii;
typedef pair<ll,ll> llll;
typedef pair<double,double> dd;

typedef vector<int> vi;
typedef vector<vector<int>> vvi;
typedef vector<ii> vii;
typedef vector<vector<ii>> vvii;
typedef vector<ll> vll;
typedef vector<vector<ll>> vvll;
typedef vector<llll> vllll;
typedef vector<bool> vb;
typedef vector<string> vs;
typedef vector<double> vd;
typedef vector<long double> vD;

#define sz(a)  int((a).size())
#define pb  push_back
#define eb  emplace_back
#define FOR(var,from,to) for(int var=(from);var<=(to);++var)
#define rep(var,n)  for(int var=0;var<(n);++var)
#define rep1(var,n)  for(int var=1;var<=(n);++var)
#define repC2(vari,varj,n)  for(int vari=0;vari<(n)-1;++vari)for(int varj=vari+1;varj<(n);++varj)
#define repC3(vari,varj,vark,n)  for(int vari=0;vari<(n)-2;++vari)for(int varj=vari+1;varj<(n)-1;++varj)for(int vark=varj+1;vark<(n);++vark)
#define ALL(c)  (c).begin(),(c).end()
#define RALL(c)  (c).rbegin(),(c).rend()
#define tr(i,c)  for(auto i=(c).begin(); i!=(c).end(); ++i)
#define found(s,e)  ((s).find(e)!=(s).end())
#define mset(arr,val)  memset(arr,val,sizeof(arr))
#define mid(x,y) ((x)+((y)-(x))/2)
#define IN(x,a,b) ((a)<=(x)&&(x)<=(b))
#define cons make_pair
#define clamp(v,lo,hi) min(max(v,lo),hi)

template<typename T1, typename T2> inline void amin(T1 & a, T2 const & b) { if (a>b) a=b; }
template<typename T1, typename T2> inline void amax(T1 & a, T2 const & b) { if (a<b) a=b; }
template<typename X, typename T> auto vectors(X x, T a) { return vector<T>(x, a); }
template<typename X, typename Y, typename Z, typename... Zs> auto vectors(X x, Y y, Z z, Zs... zs) { auto cont = vectors(y, z, zs...); return vector<decltype(cont)>(x, cont); }

inline ll square(ll x) { return x * x; }
inline ll gcd(ll a, ll b) { while(a) swap(a, b%=a); return b; }
template <typename T>
inline T mod(T a, T b) { return ((a % b) + b) % b; }

template <typename T>
int find_left(vector<T>& v, T elem) {
    return (int)(upper_bound(v.begin(), v.end(), elem) - v.begin()) - 1;
}
template <typename T>
int find_right(vector<T>& v, T elem) {
    return (int)(lower_bound(v.begin(), v.end(), elem) - v.begin());
}

const ll MOD=1000000007LL;

inline ll ADD(ll x, ll y) { return (x+y) % MOD; }
inline ll SUB(ll x, ll y) { return (x-y+MOD) % MOD; }
inline ll MUL(ll x, ll y) { return x*y % MOD; }
inline ll POW(ll x, ll e) { ll v=1; for(; e; x=MUL(x,x), e>>=1) if (e&1) v = MUL(v,x); return v; }
inline ll INV(ll y) { /*assert(y%MOD!=0);*/ return POW(y, MOD-2); }
inline ll DIV(ll x, ll y) { return MUL(x, INV(y)); }

#define INTSPACE 12
char _buf[INTSPACE*1000000 + 3];

int loadint() {
    if (fgets(_buf, INTSPACE+3, stdin)==NULL) return 0;
    return atoi(_buf);
}

int loadvec(vector<int>& v, int N=-1) {
    if (N == 0) {
        v.clear();
        return 0;
    }
    if (N == -1) {
        N = loadint();
        if (N==0) return 0;
    }
    int bufsize = INTSPACE*N + 3;
    if (fgets(_buf, bufsize, stdin)==NULL) return 0;
    v.resize(N);

    int i=0;
    bool last = false;
    for (char *p=&_buf[0]; ;) {
        char *q = p;
        while (*q > ' ') ++q;
        if (*q == 0x0D || *q == 0x0A) last = true;
        *q = 0;
        v[i++] = atoi(p);
        if (last || i == N) break;
        p = q+1;
    }
    return i;
}

inline vll vi2vll(vi& orig) {
    int L = orig.size();
    vll dest(L);
    rep(i, L) dest[i] = (ll)orig[i];
    return move(dest);
}

template <typename Elem, typename LazyOperand>
class LazySegmentTree {
 public:
    Elem (*f)(Elem a, Elem b);
    Elem (*g)(Elem a, LazyOperand b);
    LazyOperand (*h)(LazyOperand a, LazyOperand b);
    using fTYPE = decltype(f);
    using gTYPE = decltype(g);
    using hTYPE = decltype(h);

    Elem elem_ident;
    LazyOperand lazy_operand_ident;
    vector<Elem> elems;
    vector<LazyOperand> lazy_operands;
    int n, height;

    LazySegmentTree(fTYPE f, gTYPE g, hTYPE h,
                    Elem elem_ident, LazyOperand lazy_operand_ident)
        : f(f), g(g), h(h),
          elem_ident(elem_ident), lazy_operand_ident(lazy_operand_ident) {}

    void init(int n_temp) {
        n = 1; height = 0;
        while (n < n_temp) { n <<= 1; ++height; }
        elems.assign(2*n, elem_ident);
        lazy_operands.assign(2*n, lazy_operand_ident);
    }

    void build(const vector<Elem>& v){
        int n_temp = v.size();
        init(n_temp);
        rep(i,n_temp) elems[n+i] = v[i];
        for (int i=n-1; i>0; --i) {
            elems[i] = (*f)(elems[i*2], elems[i*2+1]);
        }
    }

    inline void assign_merged_lazy(LazyOperand& dest, LazyOperand x) {
        dest = (*h)(dest, x);
    }

    inline Elem reflect(int k){
        return (lazy_operands[k] == lazy_operand_ident) ? elems[k] : (*g)(elems[k], lazy_operands[k]);
    }

    inline void _eval(int k){
        if (lazy_operands[k] != lazy_operand_ident) {
            assign_merged_lazy(lazy_operands[k*2], lazy_operands[k]);
            assign_merged_lazy(lazy_operands[k*2+1], lazy_operands[k]);

            elems[k] = reflect(k);
            lazy_operands[k] = lazy_operand_ident;
        }
    }

    inline void eval_down(int k) {
        for (int i=height; i>0; --i) {
            _eval(k >> i);
        }
    }

    inline void recalc(int k) {
        while (k >>= 1) {
            elems[k] = (*f)(reflect(k*2), reflect(k*2+1));
        }
    }

    void update(int a, int b, LazyOperand x) {
        a += n; b += n;
        eval_down(a);
        eval_down(b-1);
        for (int l=a,r=b; l<r; l>>=1,r>>=1) {
            if (l & 1) assign_merged_lazy(lazy_operands[l++], x);
            if (r & 1) assign_merged_lazy(lazy_operands[--r], x);
        }
        recalc(a);
        recalc(b-1);
    }

    void set_val(int a, Elem e) {
        a += n;
        eval_down(a);
        elems[a] = e;
        lazy_operands[a] = lazy_operand_ident;
        recalc(a);
    }

    Elem query(int a, int b) {
        a += n; b += n;
        eval_down(a);
        eval_down(b-1);
        Elem vl = elem_ident, vr = elem_ident;
        for (int l=a,r=b; l<r; l>>=1,r>>=1) {
            if (l & 1) vl = (*f)(vl, reflect(l++));
            if (r & 1) vr = (*f)(reflect(--r), vr);
        }
        Elem merged = (*f)(vl, vr);
        return merged;
    }

    void desc() {
    }
};


template <typename T>
class PlusSumLazySegTree {
    using Elem = T;
    using LazyOperand = T;
    using Monoid = pair<Elem,int>;

    static Monoid f(Monoid a, Monoid b) {
        return Monoid(a.first + b.first, a.second + b.second);
    }
    static Monoid g(Monoid a, LazyOperand b) {
        Elem p = b * a.second;
        return Monoid(a.first + p, a.second);
    }
    static LazyOperand h(LazyOperand a, LazyOperand b) {
        return a + b;
    }

    LazySegmentTree<Monoid, LazyOperand> *st = nullptr;
public:
    PlusSumLazySegTree(int size){
        st = new LazySegmentTree<Monoid, LazyOperand>(
                     &f, &g, &h, Monoid((Elem)0,0), (LazyOperand)0);
        st->build(vector<Monoid>(size, Monoid((Elem)0, 1)));
    }
    PlusSumLazySegTree(vector<Elem>& ar){
        st = new LazySegmentTree<Monoid, LazyOperand>(
                     &f, &g, &h, Monoid((Elem)0,0), (LazyOperand)0);
        vector<Monoid> tmp(ar.size());
        rep(i, ar.size()) tmp[i] = Monoid(ar[i], 1);
        st->build(tmp);
    }
    ~PlusSumLazySegTree() { delete st; }
public:
    void update(int l, int r, LazyOperand x) { st->update(l, r, x); }
    Elem query(int l, int r) { return st->query(l, r).first; }
};
/***
    using ll2 = pair<ll, int>;
    auto f_sum = [](ll2 a, ll2 b){ return ll2(a.first + b.first, a.second + b.second); };
    auto g = [](ll2 a, ll b){
        ll p = a.second * b;
        return ll2(a.first + p, a.second); };
    auto h = [](ll a, ll b){ return a+b; };
    LazySegmentTree<ll2,ll,decltype(f_sum),decltype(g),decltype(h)> st(f_sum, g, h, ll2(0,0), 0);
    st.build(vector<ll2>(N, ll2(0, 1)));

    auto g = [](ll2 a, ll b){
        return ll2((a.second % 2) ? a.first^b : a.first, a.second); }
    auto h = [](ll a, ll b){ return a^b; };
    LazySegmentTree<ll,ll,decltype(f_sum),decltype(g),decltype(h)> st(f_sum, g, h, ll2(0,0), 0);
    st.build(vector<ll>(N, ll2(0,1));

    auto g = [](ll2 a, ll b){
         ll p = a.second * b;
         return ll2(p ? p-a.first : a.first, a.second); }
    auto h = [](ll a, ll b){ return a^b; };
    LazySegmentTree<ll,ll,decltype(f_sum),decltype(g),decltype(h)> st(f_sum, g, h, ll2(0,0), 0);
    st.build(vector<ll>(N, ll2(0,1));

    auto f = [](ll a, ll b){ return min(a,b); }
    auto g = [](ll a, ll b){ return b; }
    auto h = [](ll a, ll b){ return min(a,b); };
    LazySegmentTree<ll,ll,decltype(f),decltype(g),decltype(h)> st(f, g, h, LLONG_MAX, LLONG_MAX);
    st.build(vector<ll>(N, LLONG_MAX));

    auto f = [](ll a, ll b){ return min(a,b); };
    auto g = [](ll a, ll b){ return min(a,b); };
    auto h = [](ll a, ll b){ return min(a,b); };
    LazySegmentTree<ll,ll,decltype(f),decltype(g),decltype(h)> st(f, g, h, LLONG_MAX, LLONG_MAX);
    st.build(vector<ll>(N, LLONG_MAX));
***/

template <typename T, int base=0>
class fenwick_tree_0 {
 public:
    vector<T> x;
 public:
    fenwick_tree_0(int n) : x(n+base,0) { }
    void add(int k, T a) { for (; k<x.size(); k|=k+1) x[k] += a; }
    T sum(int i, int j) {
        if (i == base) {
            T S = 0; for (; j>=0; j=(j&(j+1))-1) S += x[j]; return S;
        } else {
            return sum(base, j) - sum(base, i-1);
        }
    }
};

int main() {
    int N, Q; scanf("%d %d%*c", &N, &Q);
    vi a(N); loadvec(a,N);

    vll aLL = vi2vll(a);
    PlusSumLazySegTree<ll> st(aLL);

    vi diff(N-1, 0);
    rep(i,N-1) {
        diff[i] = (int)(a[i] != a[i+1]);
    }

    fenwick_tree_0<int> ft(N);
    rep(i,N-1){
        ft.add(i, diff[i]);
    }

    rep(i,Q){
        int op; scanf("%d ", &op);
        switch (op){
            case 1:
                {
                    int l, r, x;
                    scanf("%d %d %d%*c", &l, &r, &x); --l;
                    st.update(l, r, (ll)x);
                    if (0 <= l-1) {
                        ft.add(l-1, -diff[l-1]);
                        ll u = st.query(l-1,l), v = st.query(l,l+1);
                        diff[l-1] = (int)(u != v);
                        ft.add(l-1, diff[l-1]);
                    }
                    if (r <= N-1) {
                        ft.add(r-1, -diff[r-1]);
                        ll u = st.query(r-1,r), v = st.query(r,r+1);
                        diff[r-1] = (int)(u != v);
                        ft.add(r-1, diff[r-1]);
                    }
                }
                break;
            case 2:
                {
                    int l, r;
                    scanf("%d %d%*c", &l, &r); --l; --r;
                    printf("%d\n", 1 + ft.sum(l, r-1));
                }
                break;
        }

    }
    return 0;
}
0