結果
問題 | No.147 試験監督(2) |
ユーザー | koyopro |
提出日時 | 2020-01-08 00:26:28 |
言語 | C++11 (gcc 11.4.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 4,664 bytes |
コンパイル時間 | 1,688 ms |
コンパイル使用メモリ | 161,948 KB |
実行使用メモリ | 253,824 KB |
最終ジャッジ日時 | 2024-05-02 11:53:20 |
合計ジャッジ時間 | 4,782 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | MLE | - |
testcase_01 | MLE | - |
testcase_02 | MLE | - |
testcase_03 | AC | 1 ms
6,944 KB |
ソースコード
#include "bits/stdc++.h" using namespace std; #define int long long #define FOR(i, a, b) for(int i=(a);i<(b);i++) #define RFOR(i, a, b) for(int i=(b-1);i>=(a);i--) #define REP(i, n) for(int i=0; i<(n); i++) #define RREP(i, n) for(int i=(n-1); i>=0; i--) #define ALL(a) (a).begin(),(a).end() #define UNIQUE_SORT(l) sort(ALL(l)); l.erase(unique(ALL(l)), l.end()); #define CONTAIN(a, b) find(ALL(a), (b)) != (a).end() #define array2(type, x, y) array<array<type, y>, x> #define vector2(type) vector<vector<type> > #define out(...) printf(__VA_ARGS__) int dxy[] = {0, 1, 0, -1, 0}; void solve(); signed main() { #if DEBUG std::ifstream in("input.txt"); std::cin.rdbuf(in.rdbuf()); #endif cin.tie(0); ios::sync_with_stdio(false); solve(); return 0; } /*================================*/ template<typename T> struct Pos { T x, y; Pos(){}; Pos(T x, T y): x(x), y(y){}; Pos operator * (T t) { return Pos(t * x, t * y); } Pos operator + (Pos q) { return Pos(x + q.x, y + q.y); } Pos operator - (Pos q) { return Pos(x - q.x, y - q.y); } T dot(Pos q) { return x * q.x + y * q.y; } T det(Pos q) { return x * q.y - y * q.x; } bool operator == (Pos q) { return (x == q.x) && (y == q.y); } T operator[](size_t i) { return i ? y : x; } }; template<typename T> struct Matrix { Pos<T> rows[2]; Matrix(T a0, T a1, T b0, T b1) { rows[0] = *new Pos<T>(a0, a1); rows[1] = *new Pos<T>(b0, b1); } Pos<T> operator * (Pos<T> v) { return *new Pos<T>(rows[0].dot(v), rows[1].dot(v)); } Pos<T> operator[](size_t i) { return rows[i]; } Pos<T> col(size_t i) { return *new Pos<T>(rows[0][i], rows[1][i]); } Matrix operator * ( Matrix& q ) { return *new Matrix( rows[0].dot(q.col(0)), rows[0].dot(q.col(1)), rows[1].dot(q.col(0)), rows[1].dot(q.col(1)) ); } Matrix &operator*=( Matrix& q ) { T tmp[2][2]; REP(x,2) REP(y,2) tmp[x][y] = rows[x].dot(q.col(y)); rows[0].x = tmp[0][0]; rows[0].y = tmp[0][1]; rows[1].x = tmp[1][0]; rows[1].y = tmp[1][1]; return *this; } }; template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) { } ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; } ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; }; template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) { ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; } typedef ModInt<1000000007> mint; int N,M,Q; int C; string D; mint calcD() { mint ret = mint(0); RREP(i,D.size()) { ret += mint(D[D.size()-1-i] - '0') * (mint(10) ^ i); } return ret; } mint fib(int c) { auto base = Matrix<mint>(1,1, 1,0); auto current = Pos<mint>(1,0); while(c) { if (c%2) current = base * current; base *= base; c >>= 1; } return current.y; } void solve() { cin>>N; mint ans = mint(1); while(N--) { D.clear(); cin>>C>>D; mint c = fib(C+2); mint d = calcD(); ans *= c ^ d.get(); } cout << ans << endl; }