結果

問題 No.147 試験監督(2)
ユーザー koyoprokoyopro
提出日時 2020-01-08 00:26:28
言語 C++11
(gcc 11.4.0)
結果
MLE  
実行時間 -
コード長 4,664 bytes
コンパイル時間 1,688 ms
コンパイル使用メモリ 161,948 KB
実行使用メモリ 253,824 KB
最終ジャッジ日時 2024-05-02 11:53:20
合計ジャッジ時間 4,782 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 MLE -
testcase_01 MLE -
testcase_02 MLE -
testcase_03 AC 1 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
using namespace std;
#define int long long
#define FOR(i, a, b) for(int i=(a);i<(b);i++)
#define RFOR(i, a, b) for(int i=(b-1);i>=(a);i--)
#define REP(i, n) for(int i=0; i<(n); i++)
#define RREP(i, n) for(int i=(n-1); i>=0; i--)
#define ALL(a) (a).begin(),(a).end()
#define UNIQUE_SORT(l) sort(ALL(l)); l.erase(unique(ALL(l)), l.end());
#define CONTAIN(a, b) find(ALL(a), (b)) != (a).end()
#define array2(type, x, y) array<array<type, y>, x>
#define vector2(type) vector<vector<type> >
#define out(...) printf(__VA_ARGS__)

int dxy[] = {0, 1, 0, -1, 0};

void solve();
signed main()
{
#if DEBUG
    std::ifstream in("input.txt");
    std::cin.rdbuf(in.rdbuf());
#endif
    cin.tie(0);
    ios::sync_with_stdio(false);
    solve();
    return 0;
}

/*================================*/


template<typename T> struct Pos {
    T x, y;
    Pos(){};
    Pos(T x, T y): x(x), y(y){};
    
    Pos operator * (T t) {
        return Pos(t * x, t * y);
    }
    Pos operator + (Pos q) {
        return Pos(x + q.x, y + q.y);
    }
    Pos operator - (Pos q) {
        return Pos(x - q.x, y - q.y);
    }
    T dot(Pos q) {
        return x * q.x + y * q.y;
    }
    T det(Pos q) {
        return x * q.y - y * q.x;
    }
    bool operator == (Pos q) {
        return (x == q.x) && (y == q.y);
    }
    T operator[](size_t i) {
        return i ? y : x;
    }
};

template<typename T> struct Matrix {
    Pos<T> rows[2];
    
    Matrix(T a0, T a1,
           T b0, T b1)
    {
        rows[0] = *new Pos<T>(a0, a1);
        rows[1] = *new Pos<T>(b0, b1);
    }
    
    Pos<T> operator * (Pos<T> v) {
        return *new Pos<T>(rows[0].dot(v), rows[1].dot(v));
    }
    
    Pos<T> operator[](size_t i) {
        return rows[i];
    }
    
    Pos<T> col(size_t i) {
        return *new Pos<T>(rows[0][i], rows[1][i]);
    }
    
    Matrix operator * ( Matrix& q ) {
        return *new Matrix(
                           rows[0].dot(q.col(0)), rows[0].dot(q.col(1)),
                           rows[1].dot(q.col(0)), rows[1].dot(q.col(1))
                           );
    }
    
    Matrix &operator*=( Matrix& q ) {
        T tmp[2][2];
        REP(x,2) REP(y,2) tmp[x][y] = rows[x].dot(q.col(y));
        rows[0].x = tmp[0][0];
        rows[0].y = tmp[0][1];
        rows[1].x = tmp[1][0];
        rows[1].y = tmp[1][1];
        return *this;
    }

};

template<int MOD> struct ModInt {
    static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
    ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    int get() const { return (int)x; }
    ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
    ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
    ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
    ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
    ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
    ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
    ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
        while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
        return ModInt(u); }
    bool operator==(ModInt that) const { return x == that.x; }
    bool operator!=(ModInt that) const { return x != that.x; }
    ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
    ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
typedef ModInt<1000000007> mint;


int N,M,Q;

int C;
string D;

mint calcD() {
    mint ret = mint(0);
    RREP(i,D.size()) {
        ret += mint(D[D.size()-1-i] - '0') * (mint(10) ^ i);
    }
    return ret;
}

mint fib(int c) {
    auto base = Matrix<mint>(1,1, 1,0);
    auto current = Pos<mint>(1,0);
    while(c) {
        if (c%2) current = base * current;
        base *= base;
        c >>= 1;
    }
    return current.y;
}

void solve() {
    cin>>N;
    
    mint ans = mint(1);
    while(N--) {
        D.clear();
        cin>>C>>D;
        mint c = fib(C+2);
        mint d = calcD();
        ans *= c ^ d.get();
    }
    
    cout << ans << endl;
}








0