結果
| 問題 |
No.19 ステージの選択
|
| ユーザー |
Ricky_pon
|
| 提出日時 | 2020-01-17 02:44:48 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 5,000 ms |
| コード長 | 7,974 bytes |
| コンパイル時間 | 2,264 ms |
| コンパイル使用メモリ | 193,308 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-06-24 21:46:12 |
| 合計ジャッジ時間 | 3,006 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 24 |
ソースコード
#include <bits/stdc++.h>
#define For(i, a, b) for(int (i)=(a); (i)<(b); ++(i))
#define rFor(i, a, b) for(int (i)=(a)-1; (i)>=(b); --(i))
#define rep(i, n) For((i), 0, (n))
#define rrep(i, n) rFor((i), (n), 0)
#define fi first
#define se second
using namespace std;
typedef long long lint;
typedef unsigned long long ulint;
typedef pair<int, int> pii;
typedef pair<int, lint> pil;
typedef pair<lint, int> pli;
template<class T>bool chmax(T &a, const T &b){if(a<b){a=b; return true;} return false;}
template<class T>bool chmin(T &a, const T &b){if(a>b){a=b; return true;} return false;}
constexpr lint mod = 1e9+7;
constexpr lint INF = mod*mod;
constexpr int MAX = 200010;
typedef struct UnionFindTree{
vector<int> par;
UnionFindTree(int n): par(n, -1){}
int find(int x){
if(par[x] < 0) return x;
return par[x] = find(par[x]);
}
int size(int x){
return -par[find(x)];
}
bool unite(int x, int y){
x = find(x);
y = find(y);
if(x == y) return false;
if(size(x) < size(y)) swap(x, y);
par[x] += par[y];
par[y] = x;
return true;
}
bool same(int x, int y){
return find(x) == find(y);
}
}UF;
template<class T> struct edge{
int from, to; T cost;
edge(int f, int t, T c): from(f), to(t), cost(c){}
};
template<class T> struct Graph{
vector<vector<edge<T>>> G;
int n;
Graph(int n_): n(n_){
G.resize(n);
}
void add_edge(int f, int t, T c){
G[f].emplace_back(f, t, c);
}
pair<bool, vector<T>> bellman_ford(int s){
T d_INF = numeric_limits<T>::max();
vector<T> d(n, d_INF);
vector<edge<T>> E;
rep(i, n)for(edge<T> &e: G[i]) E.push_back(e);
d[s] = 0;
rep(i, n)for(edge<T> &e: E){
if(d[e.from] != d_INF && d[e.from] + e.cost < d[e.to]){
d[e.to] = d[e.from] + e.cost;
if(i == n-1) return make_pair(true, d);
}
}
return make_pair(false, d);
}
vector<T> dijkstra(int s){
using P = pair<T, int>;
priority_queue<P, vector<P>, greater<P>> que;
vector<T> d(n, numeric_limits<T>::max());
d[s] = 0;
que.push(P((T)0, s));
while(!que.empty()){
P p = que.top(); que.pop();
int v = p.second;
if(d[v] < p.first) continue;
for(edge<T> &e : G[v]){
if(d[e.to] > d[v] + e.cost){
d[e.to] = d[v] + e.cost;
que.push(P(d[e.to], e.to));
}
}
}
return d;
}
pair<bool, vector<vector<T>>> warshall_floyd(){
T d_INF = numeric_limits<T>::max();
vector<vector<T>> d = vector<vector<T>>(n, vector<T>(n, d_INF));
rep(i, n){
for(edge<T> &e: G[i]) d[i][e.to] = e.cost;
d[i][i] = 0;
}
rep(k, n)rep(i, n)rep(j, n)if(d[i][k] < d_INF && d[k][j] < d_INF){
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
rep(i, n)if(d[i][i] < 0) return make_pair(true, d);
return make_pair(false, d);
}
T kruskal(){
vector<edge<T>> E;
rep(i, n)for(edge<T> &e: G[i]) E.push_back(e);
sort(E.begin(), E.end(), [](const edge<T> &e1, const edge<T> &e2){return e1.cost < e2.cost;});
UF uf(n);
T res = 0;
for(edge<T> &e: E){
if(!uf.same(e.from, e.to)){
uf.unite(e.from, e.to);
res += e.cost;
}
}
return res;
}
pair<bool, vector<int>> toposo(vector<int> &a, vector<int> &vtoc, vector<vector<int>> &ctov){
int sum=0;
for(int x: a) sum+=x;
vector<int> ret(n, -1), in(n, 0);
rep(i, n)for(edge<T> &e: G[i]) ++in[e.to];
int cur = 0;
stack<int> st;
rep(i, n)if(!in[i]){
st.push(i);
int m=200;
for(int v: ctov[i]) chmin(m, a[v]);
sum+=m;
}
if(st.empty()) return make_pair(false, ret);
while(!st.empty()){
int v = st.top(); st.pop();
ret[cur++] = v;
for(edge<T> &e: G[v]){
if(!in[e.to]) return make_pair(false, ret);
--in[e.to];
if(!in[e.to]) st.push(e.to);
}
}
printf("%.1lf\n", (double)sum/2);
return make_pair(cur==n, ret);
}
bool has_cycle(){
return !toposo().fi;
}
void scc_dfs(int v, vector<bool> &used, vector<int> &vs){
used[v] = true;
for(edge<T> &e: G[v])if(!used[e.to]) scc_dfs(e.to, used, vs);
vs.push_back(v);
}
void scc_rdfs(int v, int k, vector<int> &vtoc, vector<bool> &used, vector<vector<int>> &rG, vector<vector<int>> &ctov){
used[v] = true;
vtoc[v] = k;
ctov[k].push_back(v);
for(int nv: rG[v])if(!used[nv]) scc_rdfs(nv, k, vtoc, used, rG, ctov);
}
tuple<int, vector<int>, vector<vector<int>>> scc(){
vector<vector<int>> rG(n);
rep(i, n)for(edge<T> &e: G[i]) rG[e.to].push_back(i);
vector<bool> used(n, false);
vector<int> vs;
vector<int> vtoc(n);
rep(i, n)if(!used[i]) scc_dfs(i, used, vs);
fill(used.begin(), used.end(), false);
int k = 0;
vector<vector<int>> ctov=vector<vector<int>>(n, vector<int>());
rrep(i, n)if(!used[vs[i]]) scc_rdfs(vs[i], k++, vtoc, used, rG, ctov);
return make_tuple(k, vtoc, ctov);
}
int bridge_dfs(int v, int pv, int &idx, vector<int> &ord, vector<int> &low, vector<pii> &bridge){
ord[v]=low[v]=idx++;
for(auto &e: G[v])if(e.to!=pv){
int nv=e.to;
if(ord[nv]<0){
chmin(low[v], bridge_dfs(nv, v, idx, ord, low, bridge));
if(low[nv]>ord[v]) bridge.emplace_back(min(v, nv), max(v, nv));
}
else chmin(low[v], ord[nv]);
}
return low[v];
}
vector<pii> get_bridge(){
vector<int> ord(n, -1), low(n, -1);
vector<pii> bridge;
int idx=0;
bridge_dfs(0, -1, idx, ord, low, bridge);
sort(bridge.begin(), bridge.end());
bridge.erase(unique(bridge.begin(), bridge.end()), bridge.end());
return bridge;
}
int art_dfs(int v, int prev, int &idx, vector<int> &ord, vector<int> &low, vector<int> &art){
ord[v]=low[v]=idx++;
for(auto &e: G[v])if(e.to!=prev){
int nv=e.to;
if(ord[nv]<0){
chmin(low[v], art_dfs(nv, v, idx, ord, low, art));
if((prev<0 && ord[nv]!=1) || (prev>=0 && low[nv]>=ord[v])){
art.push_back(v);
}
}
else chmin(low[v], ord[nv]);
}
return low[v];
}
vector<int> get_art(){
vector<int> ord(n, -1), low(n, -1), art;
int idx=0;
art_dfs(0, -1, idx, ord, low, art);
sort(art.begin(), art.end());
art.erase(unique(art.begin(), art.end()), art.end());
return art;
}
};
int main(){
int n;
scanf("%d", &n);
Graph<int> gr(n);
vector<int> L(n), S(n);
rep(i, n){
scanf("%d%d", &L[i], &S[i]);
--S[i];
gr.add_edge(S[i], i, 1);
}
int cmp;
vector<int> vtoc;
vector<vector<int>> ctov;
tie(cmp, vtoc, ctov)=gr.scc();
Graph<int> gr_scc(cmp);
bool used_edge[cmp][cmp];
rep(i, cmp)rep(j, cmp) used_edge[i][j]=false;
rep(i, n){
int s=vtoc[S[i]], t=vtoc[i];
if(s!=t && !used_edge[s][t]){
used_edge[s][t]=true;
gr_scc.add_edge(s, t, 1);
}
}
gr_scc.toposo(L, vtoc, ctov);
}
Ricky_pon