結果
問題 | No.19 ステージの選択 |
ユーザー | Ricky_pon |
提出日時 | 2020-01-17 02:44:48 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 5,000 ms |
コード長 | 7,974 bytes |
コンパイル時間 | 2,264 ms |
コンパイル使用メモリ | 193,308 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-24 21:46:12 |
合計ジャッジ時間 | 3,006 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 3 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 2 ms
6,944 KB |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 2 ms
6,944 KB |
testcase_23 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> #define For(i, a, b) for(int (i)=(a); (i)<(b); ++(i)) #define rFor(i, a, b) for(int (i)=(a)-1; (i)>=(b); --(i)) #define rep(i, n) For((i), 0, (n)) #define rrep(i, n) rFor((i), (n), 0) #define fi first #define se second using namespace std; typedef long long lint; typedef unsigned long long ulint; typedef pair<int, int> pii; typedef pair<int, lint> pil; typedef pair<lint, int> pli; template<class T>bool chmax(T &a, const T &b){if(a<b){a=b; return true;} return false;} template<class T>bool chmin(T &a, const T &b){if(a>b){a=b; return true;} return false;} constexpr lint mod = 1e9+7; constexpr lint INF = mod*mod; constexpr int MAX = 200010; typedef struct UnionFindTree{ vector<int> par; UnionFindTree(int n): par(n, -1){} int find(int x){ if(par[x] < 0) return x; return par[x] = find(par[x]); } int size(int x){ return -par[find(x)]; } bool unite(int x, int y){ x = find(x); y = find(y); if(x == y) return false; if(size(x) < size(y)) swap(x, y); par[x] += par[y]; par[y] = x; return true; } bool same(int x, int y){ return find(x) == find(y); } }UF; template<class T> struct edge{ int from, to; T cost; edge(int f, int t, T c): from(f), to(t), cost(c){} }; template<class T> struct Graph{ vector<vector<edge<T>>> G; int n; Graph(int n_): n(n_){ G.resize(n); } void add_edge(int f, int t, T c){ G[f].emplace_back(f, t, c); } pair<bool, vector<T>> bellman_ford(int s){ T d_INF = numeric_limits<T>::max(); vector<T> d(n, d_INF); vector<edge<T>> E; rep(i, n)for(edge<T> &e: G[i]) E.push_back(e); d[s] = 0; rep(i, n)for(edge<T> &e: E){ if(d[e.from] != d_INF && d[e.from] + e.cost < d[e.to]){ d[e.to] = d[e.from] + e.cost; if(i == n-1) return make_pair(true, d); } } return make_pair(false, d); } vector<T> dijkstra(int s){ using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; vector<T> d(n, numeric_limits<T>::max()); d[s] = 0; que.push(P((T)0, s)); while(!que.empty()){ P p = que.top(); que.pop(); int v = p.second; if(d[v] < p.first) continue; for(edge<T> &e : G[v]){ if(d[e.to] > d[v] + e.cost){ d[e.to] = d[v] + e.cost; que.push(P(d[e.to], e.to)); } } } return d; } pair<bool, vector<vector<T>>> warshall_floyd(){ T d_INF = numeric_limits<T>::max(); vector<vector<T>> d = vector<vector<T>>(n, vector<T>(n, d_INF)); rep(i, n){ for(edge<T> &e: G[i]) d[i][e.to] = e.cost; d[i][i] = 0; } rep(k, n)rep(i, n)rep(j, n)if(d[i][k] < d_INF && d[k][j] < d_INF){ d[i][j] = min(d[i][j], d[i][k] + d[k][j]); } rep(i, n)if(d[i][i] < 0) return make_pair(true, d); return make_pair(false, d); } T kruskal(){ vector<edge<T>> E; rep(i, n)for(edge<T> &e: G[i]) E.push_back(e); sort(E.begin(), E.end(), [](const edge<T> &e1, const edge<T> &e2){return e1.cost < e2.cost;}); UF uf(n); T res = 0; for(edge<T> &e: E){ if(!uf.same(e.from, e.to)){ uf.unite(e.from, e.to); res += e.cost; } } return res; } pair<bool, vector<int>> toposo(vector<int> &a, vector<int> &vtoc, vector<vector<int>> &ctov){ int sum=0; for(int x: a) sum+=x; vector<int> ret(n, -1), in(n, 0); rep(i, n)for(edge<T> &e: G[i]) ++in[e.to]; int cur = 0; stack<int> st; rep(i, n)if(!in[i]){ st.push(i); int m=200; for(int v: ctov[i]) chmin(m, a[v]); sum+=m; } if(st.empty()) return make_pair(false, ret); while(!st.empty()){ int v = st.top(); st.pop(); ret[cur++] = v; for(edge<T> &e: G[v]){ if(!in[e.to]) return make_pair(false, ret); --in[e.to]; if(!in[e.to]) st.push(e.to); } } printf("%.1lf\n", (double)sum/2); return make_pair(cur==n, ret); } bool has_cycle(){ return !toposo().fi; } void scc_dfs(int v, vector<bool> &used, vector<int> &vs){ used[v] = true; for(edge<T> &e: G[v])if(!used[e.to]) scc_dfs(e.to, used, vs); vs.push_back(v); } void scc_rdfs(int v, int k, vector<int> &vtoc, vector<bool> &used, vector<vector<int>> &rG, vector<vector<int>> &ctov){ used[v] = true; vtoc[v] = k; ctov[k].push_back(v); for(int nv: rG[v])if(!used[nv]) scc_rdfs(nv, k, vtoc, used, rG, ctov); } tuple<int, vector<int>, vector<vector<int>>> scc(){ vector<vector<int>> rG(n); rep(i, n)for(edge<T> &e: G[i]) rG[e.to].push_back(i); vector<bool> used(n, false); vector<int> vs; vector<int> vtoc(n); rep(i, n)if(!used[i]) scc_dfs(i, used, vs); fill(used.begin(), used.end(), false); int k = 0; vector<vector<int>> ctov=vector<vector<int>>(n, vector<int>()); rrep(i, n)if(!used[vs[i]]) scc_rdfs(vs[i], k++, vtoc, used, rG, ctov); return make_tuple(k, vtoc, ctov); } int bridge_dfs(int v, int pv, int &idx, vector<int> &ord, vector<int> &low, vector<pii> &bridge){ ord[v]=low[v]=idx++; for(auto &e: G[v])if(e.to!=pv){ int nv=e.to; if(ord[nv]<0){ chmin(low[v], bridge_dfs(nv, v, idx, ord, low, bridge)); if(low[nv]>ord[v]) bridge.emplace_back(min(v, nv), max(v, nv)); } else chmin(low[v], ord[nv]); } return low[v]; } vector<pii> get_bridge(){ vector<int> ord(n, -1), low(n, -1); vector<pii> bridge; int idx=0; bridge_dfs(0, -1, idx, ord, low, bridge); sort(bridge.begin(), bridge.end()); bridge.erase(unique(bridge.begin(), bridge.end()), bridge.end()); return bridge; } int art_dfs(int v, int prev, int &idx, vector<int> &ord, vector<int> &low, vector<int> &art){ ord[v]=low[v]=idx++; for(auto &e: G[v])if(e.to!=prev){ int nv=e.to; if(ord[nv]<0){ chmin(low[v], art_dfs(nv, v, idx, ord, low, art)); if((prev<0 && ord[nv]!=1) || (prev>=0 && low[nv]>=ord[v])){ art.push_back(v); } } else chmin(low[v], ord[nv]); } return low[v]; } vector<int> get_art(){ vector<int> ord(n, -1), low(n, -1), art; int idx=0; art_dfs(0, -1, idx, ord, low, art); sort(art.begin(), art.end()); art.erase(unique(art.begin(), art.end()), art.end()); return art; } }; int main(){ int n; scanf("%d", &n); Graph<int> gr(n); vector<int> L(n), S(n); rep(i, n){ scanf("%d%d", &L[i], &S[i]); --S[i]; gr.add_edge(S[i], i, 1); } int cmp; vector<int> vtoc; vector<vector<int>> ctov; tie(cmp, vtoc, ctov)=gr.scc(); Graph<int> gr_scc(cmp); bool used_edge[cmp][cmp]; rep(i, cmp)rep(j, cmp) used_edge[i][j]=false; rep(i, n){ int s=vtoc[S[i]], t=vtoc[i]; if(s!=t && !used_edge[s][t]){ used_edge[s][t]=true; gr_scc.add_edge(s, t, 1); } } gr_scc.toposo(L, vtoc, ctov); }