結果
| 問題 |
No.972 選び方のスコア
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2020-01-18 20:42:00 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 14,393 bytes |
| コンパイル時間 | 2,253 ms |
| コンパイル使用メモリ | 152,704 KB |
| 実行使用メモリ | 8,704 KB |
| 最終ジャッジ日時 | 2024-06-28 03:07:37 |
| 合計ジャッジ時間 | 5,688 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 WA * 7 |
ソースコード
/* preprocessor start */
#ifdef LOCAL
#define _GLIBCXX_DEBUG // gcc
#define _LIBCPP_DEBUG 0 // clang
#define __clock__
#else
#pragma GCC optimize("Ofast")
// #define _GLIBCXX_DEBUG
// #define _LIBCPP_DEBUG 0
// #define NDEBUG
#endif
// #define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <valarray>
#define __all(v) std::begin(v), std::end(v)
#define __rall(v) std::rbegin(v), std::rend(v)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
/* preprocessor end */
namespace setting
{
using namespace std::chrono;
system_clock::time_point start_time, end_time;
long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
struct setupper
{
setupper()
{
using namespace std;
if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);
cout << fixed << setprecision(__precision__);
#ifdef stderr_path
if(freopen(stderr_path, "a", stderr)) cerr << fixed << setprecision(__precision__);
#endif
#ifdef LOCAL
debug_stream << "\n----- stderr at LOCAL -----\n\n";
#endif
#ifdef __buffer_check__
atexit(buffer_check);
#endif
#ifdef __clock__
start_time = system_clock::now();
atexit(print_elapsed_time);
#endif
}
} __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
std::string built_func, last_func; bool is_built = false;
public:
void build(int crt_ln, const std::string &crt_func)
{
is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
}
void set(int crt_ln, const std::string &crt_func)
{
if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
}
void get(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
if(last_ln == built_ln) debug_stream << " (when built)";
debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
last_pt = built_pt, last_ln = built_ln, last_func = built_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
}
}
} myclock; // unnamed class
#define build_clock() myclock.build(__LINE__, __func__)
#define set_clock() myclock.set(__LINE__, __func__)
#define get_clock() myclock.get(__LINE__, __func__)
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
/* dump definition start */
#ifdef LOCAL
#define dump(...) debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", dump_func(#__VA_ARGS__, __VA_ARGS__)
template <class T> void dump_func(const char *ptr, const T &x)
{
debug_stream << '\t';
for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c;
debug_stream << " : " << x << '\n';
}
template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
{
debug_stream << '\t';
for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c;
debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
}
#else
#define dump(...) ((void)0)
#endif
/* dump definition end */
/* function utility start */
template <class T, class... types> T read(types... args) noexcept { T obj(args...); std::cin >> obj; return obj; }
#define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
std::ptrdiff_t dist(__ng - __ok);
while(std::abs(dist) > 1)
{
iter_type mid(__ok + dist / 2);
if(pred(mid)) __ok = mid, dist -= dist / 2;
else __ng = mid, dist /= 2;
}
return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
while(std::abs(__ok - __ng) > eps)
{
long double mid{(__ok + __ng) / 2};
(pred(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
/* functon utility end */
/* using alias start */
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = pair<i32, i32>; using pll = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
/* using alias end */
/* library start */
#ifndef Li_Chao_tree_hpp
#define Li_Chao_tree_hpp
template <class K>
class Li_Chao_tree
{
struct line
{
K slop, incp;
line(K a, K b) : slop(a), incp(b) {}
K get(const K x) const { return slop * x + incp; }
}; // struct line
struct node
{
line ln;
node *left, *right;
node(const line &l) : ln(l), left(nullptr), right(nullptr) {}
~node() { delete left; delete right; }
K get(const K x) const { return ln.get(x); }
}; // struct node
const K x_min, x_max, eps;
using comp_t = std::function<bool(const K, const K)>;
const comp_t comp;
const K identity;
node *root;
// insert a line for the interval [l, r).
node *insert(node *const p, const K l, const K r, line ln)
{
if(not p) return new node(ln);
bool lcmp = comp(ln.get(l), p->get(l));
bool rcmp = comp(ln.get(r - eps), p->get(r - eps));
if(lcmp == rcmp)
{
if(lcmp) p->ln = ln;
return p;
}
if(r - l <= eps) return p;
const K mid = (l + r) / 2;
if(comp(ln.get(mid), p->get(mid)))
{
std::swap(p->ln, ln);
lcmp = not lcmp;
}
if(lcmp) p->left = insert(p->left, l, mid, ln);
else p->right = insert(p->right, mid, r, ln);
return p;
}
// insert a segment for the interval [l, r).
node *insert(node *const p, const K l, const K r, line ln, const K s, const K t)
{
if(t - eps < l or r - eps < s) return p;
const K mid = (l + r) / 2;
if(l < s or t < r)
{
p->left = insert(p->left, l, mid, ln, s, t);
p->right = insert(p->right, mid, r, ln, s, t);
return p;
}
if(not p) return new node(ln);
bool lcmp = comp(ln.get(l), p->get(l));
bool rcmp = comp(ln.get(r - eps), p->get(r - eps));
if(lcmp == rcmp)
{
if(lcmp) p->ln = ln;
return p;
}
if(r - l <= eps) return p;
if(comp(ln.get(mid), p->get(mid)))
{
std::swap(p->ln, ln);
lcmp = not lcmp;
}
if(lcmp) p->left = insert(p->left, l, mid, ln, s, t);
else p->right = insert(p->right, mid, r, ln, s, t);
return p;
}
public:
// domain set to be the interval [x_min, x_max).
Li_Chao_tree(const K _x_min, const K _x_max, const K _eps = K(1), const comp_t &_comp = std::less<K>(), const K _identity = std::numeric_limits<K>::max())
: x_min(_x_min), x_max(_x_max), eps(_eps), comp(_comp), identity(_identity), root() {}
~Li_Chao_tree() { delete root; }
bool empty() const { return !root; }
// insert a line whose slope is p and inception is q.
void insert(const K p, const K q) { root = insert(root, x_min, x_max, line(p, q)); }
// insert a line(segment) whose slope is p, inception is q,
// and domain is the interval [s, t).
void insert(const K p, const K q, const K s, const K t) { if(s < t) root = insert(root, x_min, x_max, line(p, q), s, t); }
// get the value at x.
K query(const K x) const
{
node *p = root;
K l = x_min, r = x_max;
K res = identity;
while(p)
{
if(comp(p->get(x), res)) res = p->get(x);
if(r - l <= eps) return res;
const K mid = (l + r) / 2;
if(x < mid)
{
p = p->left;
r = mid;
}
else
{
p = p->right;
l = mid;
}
}
return res;
}
}; // class Li_Chao_tree
#endif // Li_Chao_tree_hpp
/* library end */
/* The main code follows. */
struct solver
{
solver()
{
input(int,n);
input(vector<int>,a,n);
sort(__all(a));
Li_Chao_tree<i64> cht(0,2e9+1,1,std::greater<i64>(),-1e18);
i64 ans=0;
i64 lacc=0,racc=0;
for(int i=0; i*2<n; ++i)
{
cht.insert(-i,lacc+racc);
int l=a[i]*2;
int r=a[n-1-i]*2;
lacc+=l/2;
racc+=r/2;
sbmax(ans,cht.query(l));
sbmax(ans,cht.query(r));
if(i*2+1<n)
{
l=a[i]+a[i+1];
sbmax(ans,cht.query(l));
r=a[n-1-i]+a[n-2-i];
sbmax(ans,cht.query(r));
}
}
cout << ans << "\n";
}
}; // struct solver
int main(int argc, char *argv[])
{
u32 t; // loop count
#ifdef LOCAL
t = 1;
#else
t = 1; // single test case
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--)
{
solver();
}
}
jell