結果

問題 No.972 選び方のスコア
ユーザー jelljell
提出日時 2020-01-18 20:42:00
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 14,393 bytes
コンパイル時間 3,484 ms
コンパイル使用メモリ 150,720 KB
実行使用メモリ 8,644 KB
最終ジャッジ日時 2023-09-10 11:46:55
合計ジャッジ時間 6,440 ms
ジャッジサーバーID
(参考情報)
judge14 / judge15
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 62 ms
4,380 KB
testcase_01 AC 66 ms
4,376 KB
testcase_02 AC 64 ms
4,380 KB
testcase_03 AC 43 ms
5,752 KB
testcase_04 AC 88 ms
8,644 KB
testcase_05 AC 87 ms
8,524 KB
testcase_06 AC 88 ms
8,596 KB
testcase_07 AC 49 ms
4,380 KB
testcase_08 AC 92 ms
4,380 KB
testcase_09 AC 93 ms
4,376 KB
testcase_10 AC 123 ms
4,376 KB
testcase_11 AC 118 ms
4,380 KB
testcase_12 AC 114 ms
4,376 KB
testcase_13 AC 124 ms
4,380 KB
testcase_14 AC 71 ms
4,380 KB
testcase_15 AC 42 ms
4,380 KB
testcase_16 AC 59 ms
4,380 KB
testcase_17 AC 60 ms
4,380 KB
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 AC 2 ms
4,380 KB
testcase_26 AC 1 ms
4,384 KB
testcase_27 AC 1 ms
4,380 KB
testcase_28 AC 2 ms
4,380 KB
testcase_29 AC 2 ms
4,380 KB
testcase_30 AC 1 ms
4,380 KB
testcase_31 AC 1 ms
4,384 KB
testcase_32 AC 1 ms
4,376 KB
testcase_33 AC 1 ms
4,380 KB
testcase_34 AC 1 ms
4,380 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/* preprocessor start */
#ifdef LOCAL
    #define _GLIBCXX_DEBUG  // gcc
    #define _LIBCPP_DEBUG 0 // clang
    #define __clock__
#else
    #pragma GCC optimize("Ofast")
    // #define _GLIBCXX_DEBUG
    // #define _LIBCPP_DEBUG 0
    // #define NDEBUG
#endif
// #define __buffer_check__
#define __precision__ 10
#define iostream_untie true
#define debug_stream std::cerr
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <valarray>
#define __all(v) std::begin(v), std::end(v)
#define __rall(v) std::rbegin(v), std::rend(v)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
/* preprocessor end */

namespace setting
{
    using namespace std::chrono;
    system_clock::time_point start_time, end_time;
    long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
    void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; }
    void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
    struct setupper
    {
        setupper()
        {
            using namespace std;
            if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);
            cout << fixed << setprecision(__precision__);
    #ifdef stderr_path
            if(freopen(stderr_path, "a", stderr)) cerr << fixed << setprecision(__precision__);
    #endif
    #ifdef LOCAL
            debug_stream << "\n----- stderr at LOCAL -----\n\n";
    #endif
    #ifdef __buffer_check__
            atexit(buffer_check);
    #endif
    #ifdef __clock__
            start_time = system_clock::now();
            atexit(print_elapsed_time);
    #endif
        }
    } __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
class
{
    std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln;
    std::string built_func, last_func; bool is_built = false;
public:
    void build(int crt_ln, const std::string &crt_func)
    {
        is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
    }
    void set(int crt_ln, const std::string &crt_func)
    {
        if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func;
        else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n";
    }
    void get(int crt_ln, const std::string &crt_func)
    {
        if(is_built)
        {
            std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now());
            long long diff = std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt - last_pt).count();
            debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]";
            if(last_ln == built_ln) debug_stream << " (when built)";
            debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n";
            last_pt = built_pt, last_ln = built_ln, last_func = built_func;
        }
        else
        {
            debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n";
        }
    }
} myclock; // unnamed class
    #define build_clock() myclock.build(__LINE__, __func__)
    #define set_clock() myclock.set(__LINE__, __func__)
    #define get_clock() myclock.get(__LINE__, __func__)
#else
    #define build_clock() ((void)0)
    #define set_clock() ((void)0)
    #define get_clock() ((void)0)
#endif

namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std

/* dump definition start */
#ifdef LOCAL
    #define dump(...) debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", dump_func(#__VA_ARGS__, __VA_ARGS__)
    template <class T> void dump_func(const char *ptr, const T &x)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c;
        debug_stream << " : " << x << '\n';
    }
    template <class T, class... rest_t> void dump_func(const char *ptr, const T &x, rest_t... rest)
    {
        debug_stream << '\t';
        for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c;
        debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...);
    }
#else
    #define dump(...) ((void)0)
#endif
/* dump definition end */

/* function utility start */
template <class T, class... types> T read(types... args) noexcept { T obj(args...); std::cin >> obj; return obj; }
#define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
    std::ptrdiff_t dist(__ng - __ok);
    while(std::abs(dist) > 1)
    {
        iter_type mid(__ok + dist / 2);
        if(pred(mid)) __ok = mid, dist -= dist / 2;
        else __ng = mid, dist /= 2;
    }
    return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// reset all bits.
template <class A> void reset(A &array) { memset(array, 0, sizeof(array)); }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
/* functon utility end */

/* using alias start */
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using pii = pair<i32, i32>; using pll = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
/* using alias end */

/* library start */

#ifndef Li_Chao_tree_hpp
#define Li_Chao_tree_hpp

template <class K>
class Li_Chao_tree
{
    struct line
    {
        K slop, incp;
        line(K a, K b) : slop(a), incp(b) {}
        K get(const K x) const { return slop * x + incp; }
    }; // struct line

    struct node
    {
        line ln;
        node *left, *right;
        node(const line &l) : ln(l), left(nullptr), right(nullptr) {}
        ~node() { delete left; delete right; }
        K get(const K x) const { return ln.get(x); }
    }; // struct node

    const K x_min, x_max, eps;
    using comp_t = std::function<bool(const K, const K)>;
    const comp_t comp;
    const K identity;
    node *root;

    // insert a line for the interval [l, r).
    node *insert(node *const p, const K l, const K r, line ln)
    {
        if(not p) return new node(ln);
        bool lcmp = comp(ln.get(l), p->get(l));
        bool rcmp = comp(ln.get(r - eps), p->get(r - eps));
        if(lcmp == rcmp)
        {
            if(lcmp) p->ln = ln;
            return p;
        }
        if(r - l <= eps) return p;
        const K mid = (l + r) / 2;
        if(comp(ln.get(mid), p->get(mid)))
        {
            std::swap(p->ln, ln);
            lcmp = not lcmp;
        }
        if(lcmp) p->left = insert(p->left, l, mid, ln);
        else p->right = insert(p->right, mid, r, ln);
        return p;
    }

    // insert a segment for the interval [l, r).
    node *insert(node *const p, const K l, const K r, line ln, const K s, const K t)
    {
        if(t - eps < l or r - eps < s) return p;
        const K mid = (l + r) / 2;
        if(l < s or t < r)
        {
            p->left = insert(p->left, l, mid, ln, s, t);
            p->right = insert(p->right, mid, r, ln, s, t);
            return p;
        }
        if(not p) return new node(ln);
        bool lcmp = comp(ln.get(l), p->get(l));
        bool rcmp = comp(ln.get(r - eps), p->get(r - eps));
        if(lcmp == rcmp)
        {
            if(lcmp) p->ln = ln;
            return p;
        }
        if(r - l <= eps) return p;
        if(comp(ln.get(mid), p->get(mid)))
        {
            std::swap(p->ln, ln);
            lcmp = not lcmp;
        }
        if(lcmp) p->left = insert(p->left, l, mid, ln, s, t);
        else p->right = insert(p->right, mid, r, ln, s, t);
        return p;
    }

public:
    // domain set to be the interval [x_min, x_max).
    Li_Chao_tree(const K _x_min, const K _x_max, const K _eps = K(1), const comp_t &_comp = std::less<K>(), const K _identity = std::numeric_limits<K>::max())
        : x_min(_x_min), x_max(_x_max), eps(_eps), comp(_comp), identity(_identity), root() {}
    ~Li_Chao_tree() { delete root; }

    bool empty() const { return !root; }

    // insert a line whose slope is p and inception is q.
    void insert(const K p, const K q) { root = insert(root, x_min, x_max, line(p, q)); }

    // insert a line(segment) whose slope is p, inception is q,
    // and domain is the interval [s, t).
    void insert(const K p, const K q, const K s, const K t) { if(s < t) root = insert(root, x_min, x_max, line(p, q), s, t); }

    // get the value at x.
    K query(const K x) const
    {
        node *p = root;
        K l = x_min, r = x_max;
        K res = identity;
        while(p)
        {
            if(comp(p->get(x), res)) res = p->get(x);
            if(r - l <= eps) return res;
            const K mid = (l + r) / 2;
            if(x < mid)
            {
                p = p->left;
                r = mid;
            }
            else
            {
                p = p->right;
                l = mid;
            }
        }
        return res;
    }
}; // class Li_Chao_tree

#endif // Li_Chao_tree_hpp


/* library end */

/* The main code follows. */


struct solver
{

    solver()
    {
        input(int,n);
        input(vector<int>,a,n);
        sort(__all(a));
        Li_Chao_tree<i64> cht(0,2e9+1,1,std::greater<i64>(),-1e18);
        i64 ans=0;
        i64 lacc=0,racc=0;
        for(int i=0; i*2<n; ++i)
        {
            cht.insert(-i,lacc+racc);
            int l=a[i]*2;
            int r=a[n-1-i]*2;
            lacc+=l/2;
            racc+=r/2;
            sbmax(ans,cht.query(l));
            sbmax(ans,cht.query(r));
            if(i*2+1<n)
            {
                l=a[i]+a[i+1];
                sbmax(ans,cht.query(l));
                r=a[n-1-i]+a[n-2-i];
                sbmax(ans,cht.query(r));
            }
        }
        cout << ans << "\n";
    }
}; // struct solver

int main(int argc, char *argv[])
{
    u32 t; // loop count
#ifdef LOCAL
    t = 1;
#else
    t = 1; // single test case
#endif
    // t = -1; // infinite loop
    // cin >> t; // case number given

    while(t--)
    {
        solver();
    }
}
0