結果
問題 | No.1086 桁和の桁和2 |
ユーザー | QCFium |
提出日時 | 2020-01-20 21:44:58 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,973 bytes |
コンパイル時間 | 1,693 ms |
コンパイル使用メモリ | 169,144 KB |
実行使用メモリ | 5,632 KB |
最終ジャッジ日時 | 2024-07-02 23:10:18 |
合計ジャッジ時間 | 7,211 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 144 ms
5,504 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | WA | - |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 91 ms
5,376 KB |
testcase_11 | AC | 25 ms
5,376 KB |
testcase_12 | AC | 6 ms
5,376 KB |
testcase_13 | AC | 115 ms
5,376 KB |
testcase_14 | AC | 73 ms
5,376 KB |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | AC | 145 ms
5,632 KB |
ソースコード
#include <bits/stdc++.h> int ri() { int n; scanf("%d", &n); return n; } #define MOD 1000000007 template<int mod> struct ModInt{ int x; ModInt():x(0){} ModInt(long long y):x(y>=0?y%mod:(mod-(-y)%mod)%mod){} ModInt &operator+=(const ModInt &p){ if((x+=p.x)>=mod)x-=mod; return *this; } ModInt &operator-=(const ModInt &p){ if((x+=mod-p.x)>=mod)x-=mod; return *this; } ModInt &operator*=(const ModInt &p){ x=(int)(1LL*x*p.x%mod); return *this; } ModInt &operator/=(const ModInt &p){ *this*=p.inverse(); return *this; } ModInt &operator^=(long long p){ ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-()const{return ModInt(-x);} ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;} ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;} ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;} ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;} ModInt operator^(long long p)const{return ModInt(*this)^=p;} bool operator==(const ModInt &p)const{return x==p.x;} bool operator!=(const ModInt &p)const{return x!=p.x;} explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) {x = p; return ModInt(*this);} // added by QCFium ModInt inverse()const{ int a=x,b=mod,u=1,v=0,t; while(b>0){ t=a/b; a-=t*b; std::swap(a,b); u-=t*v; std::swap(u,v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os,const ModInt<mod> &p){ return os<<p.x; } friend std::istream &operator>>(std::istream &is,ModInt<mod> &a){ long long x; is>>x; a=ModInt<mod>(x); return (is); } }; typedef ModInt<MOD> mint; struct MComb { std::vector<mint> fact; std::vector<mint> inversed; MComb(int n) { // O(n+log(mod)) fact = std::vector<mint>(n+1,1); for (int i = 1; i <= n; i++) fact[i] = fact[i-1]*mint(i); inversed = std::vector<mint>(n+1); inversed[n] = fact[n] ^ (MOD-2); for (int i = n - 1; i >= 0; i--) inversed[i]=inversed[i+1]*mint(i+1); } mint ncr(int n, int r) { return (fact[n] * inversed[r] * inversed[n-r]); } mint npr(int n, int r) { return (fact[n] * inversed[n-r]); } mint nhr(int n, int r) { assert(n+r-1 < (int)fact.size()); return ncr(n+r-1, r); } }; mint calc(int64_t max, int mod9) { mint res = ((mint(10) ^ max) - 1) / 9; if (mod9 == 0) res += 1; return res; } int main() { int n = ri(); int64_t l[n], r[n]; int d[n]; for (auto &i : l) std::cin >> i; for (auto &i : r) std::cin >> i; for (auto &i : d) i = ri(); int i = 0; for (; i < n; i++) if (d[i]) break; if (i == n) puts("1"), exit(0); for (int j = i; j < n; j++) if (!d[j]) puts("0"), exit(0); d[i] %= 9; for (int j = i + 1; j < n; j++) d[j] = (d[j] + 9 - d[j - 1]) % 9; mint res = 1; for (int j = i; j < n; j++) res *= (calc(r[j], d[j]) - calc(l[j], d[j]) + !d[j]); std::cout << res << std::endl; return 0; }