結果
問題 | No.132 点と平面との距離 |
ユーザー | mkawa2 |
提出日時 | 2020-01-21 15:01:39 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 3,787 ms / 5,000 ms |
コード長 | 1,667 bytes |
コンパイル時間 | 80 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 11,008 KB |
最終ジャッジ日時 | 2024-07-05 17:49:23 |
合計ジャッジ時間 | 5,914 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 165 ms
10,880 KB |
testcase_01 | AC | 1,156 ms
11,008 KB |
testcase_02 | AC | 3,787 ms
10,880 KB |
ソースコード
import sys sys.setrecursionlimit(10 ** 6) from bisect import * from collections import * from heapq import * int1 = lambda x: int(x) - 1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def MI1(): return map(int1, sys.stdin.readline().split()) def MF(): return map(float, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LI1(): return list(map(int1, sys.stdin.readline().split())) def LF(): return list(map(float, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] dij = [(0, 1), (1, 0), (0, -1), (-1, 0)] def main(): # 3点Q1,Q2,Q3からできる三角形を底面とし、Pを頂点とする三角すいを考える # 底面積(△Q1Q2Q3)と体積が分かれば高さ(点Pと平面Q1Q2Q3の距離)が分かる n = II() xp, yp, zp = LF() qq = [LF() for _ in range(n)] qq = [[x - xp, y - yp, z - zp] for x, y, z in qq] ans = 0 for k, (x3, y3, z3) in enumerate(qq): for j, (x2, y2, z2) in enumerate(qq[:k]): for (x1, y1, z1) in qq[:j]: # 体積(の6倍)vを求める v = abs(x1 * y2 * z3 + y1 * z2 * x3 + z1 * x2 * y3 - z1 * y2 * x3 - y1 * x2 * z3 - x1 * z2 * y3) # 底面積(の2倍)sを求める xa, ya, za = x2 - x1, y2 - y1, z2 - z1 xb, yb, zb = x3 - x1, y3 - y1, z3 - z1 s = ((xa*yb-ya*xb)**2+(ya*zb-za*yb)**2+(za*xb-xa*zb)**2)**0.5 # h=v/sより高さhを求める ans += v / s print(ans) main()